Optimized invisibility cloaks from the Logarithm conformal mapping

Invisibility cloaks designed from the coordinate transformation method have attracted increasing interest recently. Conformal transformation optics scheme leads to cloaks that possess isotopic media, thus provides a prospective way to facilitate easier realization. Reducing the maximum value of the refractive index required by the cloaks is very important in practical imple- mentation. This letter studies on how the parameters in the logarithm conformal mapping control the cloaking effect. The optimized invisibility cloaks are designed. The maximum values of the refractive index required from the first kind and the second kind of logarithm conformal mappings are reduced to 9.779 and 12.936, respectively.

[1]  Vladimir M. Shalaev,et al.  Optical cloaking with metamaterials , 2006, physics/0611242.

[2]  David R. Smith,et al.  Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations , 2007, 0706.2452.

[3]  X. Zhang,et al.  Recent advances in transformation optics. , 2012, Nanoscale.

[4]  A. Kildishev,et al.  Transformation optics and metamaterials , 2011 .

[5]  R. Gajić,et al.  Controlling electromagnetic fields with graded photonic crystals in metamaterial regime. , 2010, Optics express.

[6]  E. J. Post Formal Structure of Electromagnetics: General Covariance and Electromagnetics , 1997 .

[7]  Yougang Ke,et al.  Flat designs of impedance-matched nonmagnetic phase transformer and wave-shaping polarization splitter via transformation optics , 2015 .

[8]  Stefan A. Maier,et al.  Transformation optics and hidden symmetries , 2014 .

[9]  Yijun Feng,et al.  Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials , 2011 .

[10]  Yu Luo,et al.  Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding. , 2012, ACS nano.

[11]  E. J. Post,et al.  Formal Structure of Electromagnetics , 1963 .

[12]  Huanyang Chen,et al.  Logarithm conformal mapping brings the cloaking effect , 2014, Scientific Reports.

[13]  Kan Yao,et al.  Conformal transformations to achieve unidirectional behavior of light , 2012 .

[14]  Steven G. Johnson,et al.  Transformation inverse design. , 2013, Optics express.

[15]  Yu Luo,et al.  Transforming the optical landscape , 2015, Science.

[16]  Dang Yuan Lei,et al.  Interaction between plasmonic nanoparticles revisited with transformation optics. , 2010, Physical review letters.

[17]  Qiannan Wu,et al.  Cloaking and imaging at the same time , 2012, 1207.4244.

[18]  Yu Luo,et al.  van der Waals interactions at the nanoscale: The effects of nonlocality , 2014, Proceedings of the National Academy of Sciences.

[19]  David R. Smith,et al.  Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches , 2011 .

[20]  T. Tyc,et al.  Perfect conformal invisible device with feasible refractive indexes , 2016 .

[21]  Stefan A. Maier,et al.  Designing plasmonic gratings with transformation optics , 2015 .

[22]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[23]  Dang Yuan Lei,et al.  Broadband light harvesting nanostructures robust to edge bluntness. , 2012, Physical review letters.

[24]  E. Tsymbal,et al.  An ultrathin invisibility skin cloak for visible light , 2022 .

[25]  Yu Luo,et al.  Capturing photons with transformation optics , 2013, Nature Physics.

[26]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[27]  Fei Sun,et al.  Extending the scanning angle of a phased array antenna by using a null-space medium , 2014, Scientific reports.

[28]  F. García-Vidal,et al.  Transformation optics for plasmonics. , 2010, Nano letters.

[29]  Xiang Zhang,et al.  Transformational plasmon optics. , 2010, Nano letters.

[30]  Kan Yao,et al.  Designing feasible optical devices via conformal mapping , 2011 .

[31]  Xiaopeng Zhao,et al.  Broadband impedance-matched near-zero-index metamaterials for a wide scanning phased array antenna design , 2016 .