Network Interactions Explain Sensitivity to Dynamic Faces in the Superior Temporal Sulcus

The superior temporal sulcus (STS) in the human and monkey is sensitive to the motion of complex forms such as facial and bodily actions. We used functional magnetic resonance imaging (fMRI) to explore network-level explanations for how the form and motion information in dynamic facial expressions might be combined in the human STS. Ventral occipitotemporal areas selective for facial form were localized in occipital and fusiform face areas (OFA and FFA), and motion sensitivity was localized in the more dorsal temporal area V5. We then tested various connectivity models that modeled communication between the ventral form and dorsal motion pathways. We show that facial form information modulated transmission of motion information from V5 to the STS, and that this face-selective modulation likely originated in OFA. This finding shows that form-selective motion sensitivity in the STS can be explained in terms of modulation of gain control on information flow in the motion pathway, and provides a substantial constraint for theories of the perception of faces and biological motion.

[1]  J. Lange,et al.  A Model of Biological Motion Perception from Configural Form Cues , 2006, The Journal of Neuroscience.

[2]  Doris Y. Tsao,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006, Science.

[3]  Lucia M Vaina,et al.  Perceptual deficits in patients with impaired recognition of biological motion after temporal lobe lesions. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[4]  A. Calder Does Facial Identity and Facial Expression Recognition Involve Separate Visual Routes , 2011 .

[5]  P. Sinha,et al.  Functional neuroanatomy of biological motion perception in humans , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Karl J. Friston,et al.  Comparing Families of Dynamic Causal Models , 2010, PLoS Comput. Biol..

[7]  Karl J. Friston,et al.  Nonlinear Dynamic Causal Models for Fmri Nonlinear Dynamic Causal Models for Fmri Nonlinear Dynamic Causal Models for Fmri , 2022 .

[8]  Aina Puce,et al.  Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex , 2004, NeuroImage.

[9]  Skyler T. Hawk,et al.  Moving faces, looking places: validation of the Amsterdam Dynamic Facial Expression Set (ADFES). , 2011, Emotion.

[10]  E. Vatikiotis-Bateson,et al.  Perceiving Biological Motion: Dissociating Visible Speech from Walking , 2003, Journal of Cognitive Neuroscience.

[11]  Karl J. Friston,et al.  Comparing dynamic causal models , 2004, NeuroImage.

[12]  Robert T. Knight,et al.  Superior Temporal SulcusIt's My Area: Or Is It? , 2008, Journal of Cognitive Neuroscience.

[13]  A. Young,et al.  Understanding the recognition of facial identity and facial expression , 2005, Nature Reviews Neuroscience.

[14]  S. Kiebel,et al.  An Introduction to Random Field Theory , 2003 .

[15]  Daniel D. Dilks,et al.  Differential selectivity for dynamic versus static information in face-selective cortical regions , 2011, NeuroImage.

[16]  G. Orban,et al.  Action Observation Circuits in the Macaque Monkey Cortex , 2011, The Journal of Neuroscience.

[17]  B. Vastag Fear in the Amygdala , 2002 .

[18]  Karl J. Friston Testing for anatomically specified regional effects , 1997, Human brain mapping.

[19]  D. Perrett,et al.  Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. , 1996, Journal of neurophysiology.

[20]  J. Haxby,et al.  fMRI Responses to Video and Point-Light Displays of Moving Humans and Manipulable Objects , 2003, Journal of Cognitive Neuroscience.

[21]  G. Rizzolatti,et al.  View-Based Encoding of Actions in Mirror Neurons of Area F5 in Macaque Premotor Cortex , 2011, Current Biology.

[22]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[23]  Aina Puce,et al.  Common and distinct brain activation to viewing dynamic sequences of face and hand movements , 2007, NeuroImage.

[24]  Karl J. Friston,et al.  Modulation of Perception and Brain Activity by Predictable Trajectories of Facial Expressions , 2009, Cerebral cortex.

[25]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[26]  D. Perrett,et al.  Responses of Anterior Superior Temporal Polysensory (STPa) Neurons to Biological Motion Stimuli , 1994, Journal of Cognitive Neuroscience.

[27]  T. Flash,et al.  Neuronal encoding of human kinematic invariants during action observation. , 2010, Cerebral cortex.

[28]  Wendy Baccus,et al.  Form and motion make independent contributions to the response to biological motion in occipitotemporal cortex , 2012, NeuroImage.

[29]  M. Herrmann,et al.  Emotions in motion: Dynamic compared to static facial expressions of disgust and happiness reveal more widespread emotion-specific activations , 2009, Brain Research.

[30]  J. Haxby,et al.  Distributed Neural Systems for Face Perception , 2011 .

[31]  Mark H. Johnson,et al.  Oxford Handbook of Face Perception , 2011 .

[32]  J. Haxby,et al.  The distributed human neural system for face perception , 2000, Trends in Cognitive Sciences.

[33]  G. Orban,et al.  Charting the Lower Superior Temporal Region, a New Motion-Sensitive Region in Monkey Superior Temporal Sulcus , 2006, The Journal of Neuroscience.

[34]  Christopher J. Fox,et al.  Defining the face processing network: Optimization of the functional localizer in fMRI , 2009, Human brain mapping.

[35]  G. Orban,et al.  The kinetic occipital (KO) region in man: an fMRI study. , 1997, Cerebral cortex.

[36]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.

[37]  Karl J. Friston,et al.  Human Brain Function , 1997 .

[38]  H. Bülthoff,et al.  What the Human Brain Likes About Facial Motion , 2012, Cerebral cortex.

[39]  Carl Senior,et al.  Dynamic Facial Expressions Evoke Distinct Activation in the Face Perception Network: A Connectivity Analysis Study , 2012, Journal of Cognitive Neuroscience.

[40]  Karl J. Friston,et al.  Ten simple rules for dynamic causal modeling , 2010, NeuroImage.

[41]  A. O'Toole,et al.  Recognizing moving faces: a psychological and neural synthesis , 2002, Trends in Cognitive Sciences.

[42]  James M. Kilner,et al.  More than one pathway to action understanding , 2011, Trends in Cognitive Sciences.

[43]  J. Haxby,et al.  Parallel Visual Motion Processing Streams for Manipulable Objects and Human Movements , 2002, Neuron.

[44]  Neil G. Muggleton,et al.  Effects of TMS over Premotor and Superior Temporal Cortices on Biological Motion Perception , 2012, Journal of Cognitive Neuroscience.

[45]  Guy A. Orban,et al.  Integration of shape and motion cues in biological motion processing in the monkey STS , 2012, NeuroImage.

[46]  S. Zeki,et al.  Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. , 1971, Brain research.

[47]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[48]  M. Sereno,et al.  Point-Light Biological Motion Perception Activates Human Premotor Cortex , 2004, The Journal of Neuroscience.

[49]  Simon B Eickhoff,et al.  Brain regions involved in human movement perception: A quantitative voxel‐based meta‐analysis , 2012, Human brain mapping.

[50]  Aina Puce,et al.  Configural Processing of Biological Motion in Human Superior Temporal Sulcus , 2005, The Journal of Neuroscience.

[51]  G. Orban,et al.  Human Functional Magnetic Resonance Imaging Reveals Separation and Integration of Shape and Motion Cues in Biological Motion Processing , 2009, The Journal of Neuroscience.

[52]  T. Poggio,et al.  Cognitive neuroscience: Neural mechanisms for the recognition of biological movements , 2003, Nature Reviews Neuroscience.

[53]  J. Schultz,et al.  Natural facial motion enhances cortical responses to faces , 2009, Experimental Brain Research.

[54]  Karl J. Friston,et al.  Top-Down Control of Visual Responses to Fear by the Amygdala , 2013, The Journal of Neuroscience.

[55]  Richard Coppola,et al.  Cross-frequency power coupling between hierarchically organized face-selective areas. , 2014, Cerebral cortex.

[56]  P. C. Murphy,et al.  Cerebral Cortex , 2017, Cerebral Cortex.