Efficient iterative solvers for structural dynamics problems

Abstract Direct solvers are commonly used in implicit finite element codes for structural dynamics problems. This study explores an alternative approach to solving the resulting linear systems by using preconditioned iterative schemes such as the preconditioned conjugate gradient algorithm and its variants. Preconditioners used in this study include approximate Cholesky factorization, block Jacobi, and the symmetric Gauss–Seidel over-relaxation scheme. The effects of various preconditioners and ordering schemes on the solution time and required storage are investigated. Performance results of these iterative solver are compared against the MA57 direct solver routine of the commercial Harwell Software Library.

[1]  Deflation of Eigenvalues for GMRES in Lattice QCD , 2001, hep-lat/0109009.

[2]  J. Reid Large Sparse Sets of Linear Equations , 1973 .

[3]  T. Manteuffel An incomplete factorization technique for positive definite linear systems , 1980 .

[4]  Ahmed H. Sameh,et al.  Row Projection Methods for Large Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[5]  H. Langhaar Energy Methods in Applied Mechanics , 1962 .

[6]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[7]  K. Bathe Finite Element Procedures , 1995 .

[8]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[9]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[10]  E. Sturler,et al.  Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .

[11]  G. Stewart,et al.  Sparse Matrix Proceedings. , 1980 .

[12]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[13]  O. Axelsson Iterative solution methods , 1995 .

[14]  N. Munksgaard,et al.  Solving Sparse Symmetric Sets of Linear Equations by Preconditioned Conjugate Gradients , 1980, TOMS.

[15]  John R. Gilbert,et al.  Sparse Matrices in MATLAB: Design and Implementation , 1992, SIAM J. Matrix Anal. Appl..

[16]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[17]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[18]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[19]  Chih-Jen Lin,et al.  Incomplete Cholesky Factorizations with Limited Memory , 1999, SIAM J. Sci. Comput..

[20]  B. E. Engelmann,et al.  Large-Scale Nonlinear Finite Element Analysis–Explicit Aspects , 1993 .

[21]  I. Gustafsson A class of first order factorization methods , 1978 .

[22]  Iain S. Duff,et al.  MA57---a code for the solution of sparse symmetric definite and indefinite systems , 2004, TOMS.

[23]  I. Duff,et al.  The effect of ordering on preconditioned conjugate gradients , 1989 .

[24]  Mark T. Jones,et al.  An improved incomplete Cholesky factorization , 1995, TOMS.

[25]  Milan D. Mihajlovic,et al.  Efficient parallel solvers for the biharmonic equation , 2004, Parallel Comput..