Optically-transparent and electrically-conductive AgI–AgPO3–WO3 glass fibers

In this study, we report to our knowledge the first optically-transparent and electrically-conductive optical glass fiber belonging to the system AgI–AgPO3–WO3. The addition of tungsten oxide (WO3) into the phosphate glassy network allowed the adjustment of the glass transition temperature, thermal expansion coefficient, refractive index, optical band edge, and electrical conductivity, which are all very important parameters in view of drawing glass fibers with a desired set of electrical and optical properties. Furthermore, the addition of WO3 can improve considerably glass stability against water and humidity in the environment. AgI–AgPO3–WO3 glass fibers with 15 mol% WO3 showed 2 dB m−1 optical propagation loss from 800 to 950 nm wavelength range, and 10−3 S cm−1 electrical conductivity at 1 MHz AC frequency. Complex impedance spectra and thermal activation energies ranging from 0.15 to 0.30 eV are indicative of a dominant conductivity mechanism being ionic in nature within the range of AC frequencies from 1 Hz to 1 MHz. Fibers exhibited higher electrical conductivities than the bulk glasses. Glasses in the AgI–AgPO3–WO3 system can be used for fibers that require a set of adjustable properties pertaining to electrical conductivity, optical transparency, and environmental stability.

[1]  J. Malugani,et al.  Vibrational properties of and short range order in superionic glasses AgPO3−AgX (X = I, Br, Cl) , 1984 .

[2]  Ayman F. Abouraddy,et al.  Multimaterial Photodetecting Fibers: a Geometric and Structural Study , 2007 .

[3]  J. Bisquert,et al.  Dielectric losses measured in a sodium aluminosilicate glass by using electrical insulating barriers and non-isothermal experimental conditions , 2008 .

[4]  A. Chandra,et al.  Ion Conduction in Superionic Glassy Electrolytes: An Overview , 2013 .

[5]  L. Langenhove Smart textiles for medicine and healthcare : materials, systems and applications , 2007 .

[6]  R. V. Anavekar,et al.  Electrical conductivity studies of AgI–Ag2O–B2O3–TeO2 glasses , 2007 .

[7]  B. Roling,et al.  Role of AgI for ionic conduction in AgI-AgPO 3 glasses , 1997 .

[8]  Teppei Yamada,et al.  Size-controlled stabilization of the superionic phase to room temperature in polymer-coated AgI nanoparticles. , 2009, Nature materials.

[9]  P. Boolchand,et al.  Mobile silver ions and glass formation in solid electrolytes , 2001, Nature.

[10]  A. Dianoux,et al.  Quasielastic and inelastic neutron scattering from AgPO3−AgI glass , 1986 .

[11]  P. Boolchand,et al.  Fast-ion conduction and flexibility of glassy networks. , 2007, Physical review letters.

[12]  M. Ingram,et al.  Cluster and pathways: a new approach to ion migration in glass , 1988 .

[13]  T. Minami,et al.  Stabilization of superionic α-Agl at room temperature in a glass matrix , 1991, Nature.

[14]  Nicholas Winograd,et al.  Initial and final state effects in the ESCA spectra of cadmium and silver oxides , 1977 .

[15]  C. T. Moynihan,et al.  Ionic conductivity and the weak electrolyte theory of glass , 1980 .

[16]  T. Minami,et al.  Crystallization of α-AgI from AgI–Ag2O–MxOy (MxOy=B2O3, GeO2, WO3) melts and glasses , 1999 .

[17]  H. Hosono,et al.  Coloration and Decoloration of Tungsten Phosphate Glasses by Heat Treatments at the Temperature Far below Tg under a Controlled Ambient , 2006 .

[18]  Poonam Sharma,et al.  The Effect of Mixed Iodide Salts on the Conductivity Behavior in Ag2O-V2O5-B2O3 Superionic Glass System , 2011 .

[19]  A. Moguš‐Milanković,et al.  Electrical mobility of silver ion in Ag2O-B2O3-P2O5-TeO2 glasses. , 2014, The journal of physical chemistry. B.

[20]  A. Musinu,et al.  Coordination of Ag+ ions in AgI–Ag2O–B2O3 glasses by x‐ray diffraction , 1986 .

[21]  J. Swenson,et al.  Correlation between Free Volume and Ionic Conductivity in Fast Ion Conducting Glasses. , 1996, Physical review letters.

[22]  H. Mehrer Diffusion in solids : fundamentals, methods, materials, diffusion-controlled processes , 2007 .

[23]  L. Montagne,et al.  The structural role of Bi3+ in Na2O-Al2O3-Bi2O3-P2O5 glasses , 1997 .

[24]  P. Boolchand,et al.  Fast-ion conduction and flexibility and rigidity of solid electrolyte glasses , 2009, 0910.4508.

[25]  Paul Ben Ishai,et al.  Electrode polarization in dielectric measurements: a review , 2013 .

[26]  F. Berkemeier,et al.  Thickness-dependent dc conductivity of lithium borate glasses , 2007 .

[27]  J. Bruce,et al.  Ionic conductivity in glass: A new look at the weak electrolyte theory , 1986 .

[28]  F. Berkemeier,et al.  On the physical interpretation of constant phase elements , 2009 .

[29]  T. Minami Preparation and properties of superionic conducting glasses based on silver halides , 1983 .

[30]  T. Minami,et al.  Stabilization process of α-AgI particles dispersed in glass matrices at room temperature , 1995 .

[31]  N. Gupta,et al.  Effect of mixed glass formers on the crystallization kinetics in AgI–Ag2O–V2O5–MoO3 glassy superionic system , 2011 .

[32]  P. Mošner,et al.  Structure and properties of potassium niobato-borophosphate glasses , 2008 .

[33]  Richard K. Brow,et al.  Review: the structure of simple phosphate glasses , 2000 .

[34]  Benoit Gosselin,et al.  Novel Wireless-Communicating Textiles Made from Multi-Material and Minimally-Invasive Fibers , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[35]  M. Cao,et al.  High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite , 2009 .

[36]  M. Mesnaoui,et al.  Storage of toxic heavy metals in phosphate glasses: physical and water durability properties , 2002 .

[37]  Claire M. Cobley,et al.  Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. , 2011, Chemical reviews.

[38]  Steve W. Martin Ionic Conduction in Phosphate Glasses , 1991 .

[39]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[40]  Tsung-Shune Chin,et al.  FTIR and XPS studies of low-melting PbO-ZnO-P2O2 glasses , 1997 .

[41]  Johari,et al.  Fast ionic conduction via site percolation in AgI-AgPO3 glasses. , 1987, Physical review. B, Condensed matter.

[42]  Lieva Van Langenhove,et al.  SMART TEXTILES FOR MEDICINE AND HEALTHCARE , 2007 .

[43]  S. Anwane Electrical properties of barium titanate dispersed silver sulphate , 2013 .

[44]  F. C. Cassanjes,et al.  Redox behavior of molybdenum and tungsten in phosphate glasses. , 2008, The journal of physical chemistry. B.

[45]  W. Schubert,et al.  Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds , 1999 .

[46]  C. Rao,et al.  Cluster model of the glass transition , 1982 .

[47]  A. Lymberis,et al.  Intelligent biomedical clothing for personal health and disease management: state of the art and future vision. , 2003, Telemedicine journal and e-health : the official journal of the American Telemedicine Association.

[48]  Christopher M. Rouleau,et al.  Nanoscale effects on the ionic conductivity in highly textured YSZ thin films , 2005 .

[49]  O. Parkash,et al.  Dielectric and impedance spectroscopic studies of (Sr1−xPbx)TiO2 glass ceramics with addition of Nb2O5 , 2011 .

[50]  T. Minami Fast ion conducting glasses , 1985 .

[51]  J. Long,et al.  Comprehensive Tungsten-Iodine Cluster Chemistry: Isolated Intermediates in the Solid-State Nucleation of [W6I14]2- , 1995 .

[52]  T. King,et al.  High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator , 2003 .

[53]  Howells,et al.  Structure and Ionic Conduction in (AgI)x(AgPO3)1-x Glasses. , 1995, Physical review letters.

[54]  C. Tomasi,et al.  Water content and thermal properties of glassy silver metaphosphate: role of the preparation , 1993 .

[55]  S. Elliott,et al.  Frequency-dependent ionic conductivity in AgI-AgPO3 glasses , 1994 .

[56]  D. Sidebottom Influence of cation constriction on the ac conductivity dispersion in metaphosphate glasses , 2000 .

[57]  Simon Fleming,et al.  Electro-optic modulation in germanosilicate fibre with UV-excited poling , 1995 .

[58]  T. Minami,et al.  Comparison of Ionic Conductivity Between Glassy and Crystalline Solid Electrolytes in the System AgI‐Ag2O‐MoO3 , 1977 .

[59]  A. Musinu,et al.  Towards a model of silver halide-silver oxysalt glassy electrolytes , 1989 .

[60]  S. Ribeiro,et al.  Structural studies of NaPO3–WO3 glasses by solid state NMR and Raman spectroscopy , 2006 .

[61]  T. Minami,et al.  Stabilization of Superionic α-AgI at Room Temperature by Heating of AgI−Ag2O−MoO3 Glasses , 2001 .

[62]  M. Deschenes,et al.  A microprobe for parallel optical and electrical recordings from single neurons in vivo , 2011, Nature Methods.

[63]  J. Malugani,et al.  Fast ionic silver and lithium conduction in glasses , 1981 .