Extreme genome scrambling in cryptic Oikopleura dioica species

Genes are not randomly distributed throughout chromosomes. How gene order evolves and how selective constraints act to preserve or vary gene order, both at the macrosyntenic level of whole chromosomes or microsyntenic level of gene blocks, are central questions of evolutionary biology and genomics that remain largely unsolved. Here, after sequencing several genomes of the appendicularian tunicate Oikopleura dioica from different locations around the globe, we show an unprecedented amount of genome scrambling in animals with no obvious morphological differences, consistent with cryptic speciation. Our assemblies suggest that all members of this clade possess a common 3-chromosome karyotype, and that different species largely preserve gene content, despite the presence of thousands of rearrangements in gene order. The movements of genes are largely restricted to chromosome arms and sex-specific regions, which appear to be the primary unit of macrosynteny conservation, and examples of these within-arm movements can be seen in the Hox and Fgf gene families. Our approach employing whole-genome alignments demonstrates that segments containing protein-coding elements tend to be preserved at the microsyntenic scale, consistent with strong purifying selection, with appreciably less preservation of non-coding elements. Unexpectedly, scrambling did not preserve operon structure across species, suggesting an absence of selective pressure to maintain operon structure. As well, genome scrambling does not occur uniformly across all chromosomes, as short chromosome arms possess shorter genes, smaller operons, more breakpoints, and elevated dN/dS values compared to long chromosome arms. Estimation of divergence times among the cryptic O. dioica lineages yielded an estimated breakpoint accumulation rate of 6 to 25 breakpoints per megabase per million years, which is an order of magnitude higher than the rates for other ascidian tunicates or Drosophila species. Therefore, O. dioica appears to be an attractive animal system to unravel the mechanisms that underlie gene order and synteny conservation, as well as exploring the limits of genome scrambling without an apparent impact on phenotypic evolution.

[1]  A. Wanninger Hox, homology, and parsimony: An organismal perspective. , 2023, Seminars in cell & developmental biology.

[2]  N. Luscombe,et al.  The cosmopolitan appendicularian Oikopleura dioica reveals hidden genetic diversity around the globe , 2022, bioRxiv.

[3]  C. W. Ragsdale,et al.  Genome and transcriptome mechanisms driving cephalopod evolution , 2022, Nature Communications.

[4]  Brendan L. O’Connell,et al.  Deeply conserved synteny and the evolution of metazoan chromosomes , 2022, Science advances.

[5]  A. Murray,et al.  Mixing genome annotation methods in a comparative analysis inflates the apparent number of lineage-specific genes , 2022, Current Biology.

[6]  Frank Noé,et al.  Deeptime: a Python library for machine learning dynamical models from time series data , 2021, Mach. Learn. Sci. Technol..

[7]  Felipe A. Simão,et al.  BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes , 2021, Molecular biology and evolution.

[8]  Roy G van Heesbeen,et al.  3D genomics across the tree of life reveals condensin II as a determinant of architecture type , 2021, Science.

[9]  N. Satoh,et al.  Chromosomal Inversion Polymorphisms in Two Sympatric Ascidian Lineages , 2021, Genome biology and evolution.

[10]  N. Luscombe,et al.  H3S28P Antibody Staining of Okinawan Oikopleura dioica Suggests the Presence of Three Chromosomes , 2021, F1000Research.

[11]  T. Cheng,et al.  Dynamics and competition of CRISPR–Cas9 ribonucleoproteins and AAV donor-mediated NHEJ, MMEJ and HDR editing , 2021, Nucleic acids research.

[12]  Aaron A. Comeault,et al.  Widespread introgression across a phylogeny of 155 Drosophila genomes , 2020, Current Biology.

[13]  T. Zhao,et al.  Fibrillarin evolution through the Tree of Life: Comparative genomics and microsynteny network analyses provide new insights into the evolutionary history of Fibrillarin , 2020, PLoS Comput. Biol..

[14]  N. Luscombe,et al.  Telomere-to-telomere assembly of the genome of an individual Oikopleura dioica from Okinawa using Nanopore-based sequencing , 2020, BMC Genomics.

[15]  Martin C. Frith,et al.  A pipeline for complete characterization of complex germline rearrangements from long DNA reads , 2020, Genome Medicine.

[16]  N. Luscombe,et al.  A genome database for a Japanese population of the larvacean Oikopleura dioica , 2020, Development, growth & differentiation.

[17]  N. Luscombe,et al.  Streamlined Sampling and Cultivation of the Pelagic Cosmopolitan Larvacean, Oikopleura dioica. , 2020, Journal of visualized experiments : JoVE.

[18]  Guangchuang Yu,et al.  Using ggtree to Visualize Data on Tree‐Like Structures , 2020, Current protocols in bioinformatics.

[19]  Andrew G. Clark,et al.  RepeatModeler2: automated genomic discovery of transposable element families , 2019, bioRxiv.

[20]  Alessandra Carbone,et al.  Phylogenetic Reconstruction Based on Synteny Block and Gene Adjacencies , 2019, bioRxiv.

[21]  Yi Guan,et al.  treeio: an R package for phylogenetic tree input and output with richly annotated and associated data. , 2019, Molecular biology and evolution.

[22]  Jonathan Wood,et al.  Identifying and removing haplotypic duplication in primary genome assemblies , 2019, bioRxiv.

[23]  J. Volff,et al.  Massive Changes of Genome Size Driven by Expansions of Non-autonomous Transposable Elements , 2019, Current Biology.

[24]  Yu Lin,et al.  Assembly of long, error-prone reads using repeat graphs , 2018, Nature Biotechnology.

[25]  B. Lenhard,et al.  CNEr: A toolkit for exploring extreme noncoding conservation , 2019, bioRxiv.

[26]  H. Philippe,et al.  Evaluating the usefulness of alignment filtering methods to reduce the impact of errors on evolutionary inferences , 2019, BMC Evolutionary Biology.

[27]  Mario Stanke,et al.  Predicting Genes in Single Genomes with AUGUSTUS , 2018, Current protocols in bioinformatics.

[28]  S. Kelly,et al.  OrthoFinder: phylogenetic orthology inference for comparative genomics , 2019, Genome Biology.

[29]  W. Deng,et al.  Prevalence of Mutation-Prone Microhomology-Mediated End Joining in a Chordate Lacking the c-NHEJ DNA Repair Pathway , 2018, Current Biology.

[30]  M. Suchard,et al.  Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7 , 2018, Systematic biology.

[31]  Judith Wexler,et al.  The X chromosome of the German cockroach, Blattella germanica, is homologous to a fly X chromosome despite 400 million years divergence , 2018, BMC Biology.

[32]  P. Lemaire,et al.  A phylogenomic framework and timescale for comparative studies of tunicates , 2018, BMC Biology.

[33]  Daniel L. Ayres,et al.  Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 , 2018, Virus evolution.

[34]  Paolo Di Tommaso,et al.  Nextflow enables reproducible computational workflows , 2017, Nature Biotechnology.

[35]  Neva C. Durand,et al.  De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds , 2016, Science.

[36]  Frédéric Delsuc,et al.  Pitfalls in supermatrix phylogenomics , 2017 .

[37]  Kiyoshi Asai,et al.  Training alignment parameters for arbitrary sequencers with LAST-TRAIN , 2016, Bioinform..

[38]  Neva C. Durand,et al.  Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. , 2016, Cell systems.

[39]  F. Viard,et al.  Contrasting global genetic patterns in two biologically similar, widespread and invasive Ciona species (Tunicata, Ascidiacea) , 2016, Scientific Reports.

[40]  P. Bork,et al.  ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data , 2016, Molecular biology and evolution.

[41]  S. Kelly,et al.  OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy , 2015, Genome Biology.

[42]  H. Nishida,et al.  Maternal and zygotic transcriptomes in the appendicularian, Oikopleura dioica: novel protein-encoding genes, intra-species sequence variations, and trans-spliced RNA leader , 2015, Development Genes and Evolution.

[43]  M. Frith,et al.  Split-alignment of genomes finds orthologies more accurately , 2015, Genome Biology.

[44]  Tal Pupko,et al.  GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters , 2015, Nucleic Acids Res..

[45]  J. Volff,et al.  Embryonic expression of endogenous retroviral RNAs in somatic tissues adjacent to the Oikopleura germline , 2015, Nucleic acids research.

[46]  B. Lenhard,et al.  Trans-splicing and operons in metazoans: translational control in maternally regulated development and recovery from growth arrest. , 2015, Molecular biology and evolution.

[47]  C. Cañestro,et al.  Oikopleura dioica culturing made easy: A Low‐Cost facility for an emerging animal model in EvoDevo , 2015, Genesis.

[48]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[49]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[50]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[51]  Robert Gentleman,et al.  Software for Computing and Annotating Genomic Ranges , 2013, PLoS Comput. Biol..

[52]  Hunter B. Fraser,et al.  Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints , 2012, Genome research.

[53]  S. Bertrand,et al.  Evolution of the FGF Gene Family , 2012, International journal of evolutionary biology.

[54]  L. Berná,et al.  Peculiar patterns of amino acid substitution and conservation in the fast evolving tunicate Oikopleura dioica. , 2012, Molecular phylogenetics and evolution.

[55]  Etsuko N. Moriyama,et al.  Evolution of a Large, Conserved, and Syntenic Gene Family in Insects , 2012, G3: Genes | Genomes | Genetics.

[56]  Martin C. Frith,et al.  Gentle Masking of Low-Complexity Sequences Improves Homology Search , 2011, PloS one.

[57]  Daniel L. Ayres,et al.  BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics , 2011, Systematic biology.

[58]  Bernd Weisshaar,et al.  Targeted Identification of Short Interspersed Nuclear Element Families Shows Their Widespread Existence and Extreme Heterogeneity in Plant Genomes[W] , 2011, Plant Cell.

[59]  Isabelle S. Peter,et al.  Transphyletic conservation of developmental regulatory state in animal evolution , 2011, Proceedings of the National Academy of Sciences.

[60]  James K. Hane,et al.  A novel mode of chromosomal evolution peculiar to filamentous Ascomycete fungi , 2011, Genome Biology.

[61]  M. Frith,et al.  Adaptive seeds tame genomic sequence comparison. , 2011, Genome research.

[62]  Frédéric Delsuc,et al.  Plasticity of Animal Genome Architecture Unmasked by Rapid Evolution of a Pelagic Tunicate , 2010, Science.

[63]  Susan R. Wessler,et al.  MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences , 2010, Nucleic acids research.

[64]  M. Suchard,et al.  Bayesian random local clocks, or one rate to rule them all , 2010, BMC Biology.

[65]  R. Zeller Computational analysis of Ciona intestinalis operons. , 2010, Integrative and comparative biology.

[66]  Marco A. R. Ferreira,et al.  Bayesian analysis of elapsed times in continuous‐time Markov chains , 2008 .

[67]  Tanja Gernhard,et al.  The conditioned reconstructed process. , 2008, Journal of theoretical biology.

[68]  Boris Lenhard,et al.  Genomic regulatory blocks underlie extensive microsynteny conservation in insects. , 2007, Genome research.

[69]  Melanie A. Huntley,et al.  Evolution of genes and genomes on the Drosophila phylogeny , 2007, Nature.

[70]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[71]  Burkhard Morgenstern,et al.  AUGUSTUS: ab initio prediction of alternative transcripts , 2006, Nucleic Acids Res..

[72]  Peer Bork,et al.  PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments , 2006, Nucleic Acids Res..

[73]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[74]  Gregory Kucherov,et al.  YASS: enhancing the sensitivity of DNA similarity search , 2005, Nucleic Acids Res..

[75]  H. Lehrach,et al.  Hypervariable and Highly Divergent Intron–Exon Organizations in the Chordate Oikopleura dioica , 2004, Journal of Molecular Evolution.

[76]  Hans Lehrach,et al.  Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica , 2004, Nature.

[77]  R. Reinhardt,et al.  Spliced-Leader RNA trans Splicing in a Chordate, Oikopleura dioica, with a Compact Genome , 2004, Molecular and Cellular Biology.

[78]  Paramvir S. Dehal,et al.  Whole-Genome Shotgun Assembly and Analysis of the Genome of Fugu rubripes , 2002, Science.

[79]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[80]  H. Lehrach,et al.  Miniature genome in the marine chordate Oikopleura dioica. , 2001, Science.

[81]  R. Farber,et al.  Incorrect use of the term synteny , 1999, Nature Genetics.

[82]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[83]  Frédéric Delsuc,et al.  To What Extent Current Limits of Phylogenomics Can Be Overcome , 2020 .

[84]  C. Cañestro,et al.  Oikopleura dioica: An Emergent Chordate Model to Study the Impact of Gene Loss on the Evolution of the Mechanisms of Development. , 2019, Results and problems in cell differentiation.

[85]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[86]  Ari Löytynoja,et al.  Phylogeny-aware alignment with PRANK. , 2014, Methods in molecular biology.

[87]  W. Krner Untersuchungen ber die gehusebildung bei appendicularien (Oikopleura dioica fol) , 1952 .