The Vacuum Distributions of the Truncated Virasoro Fields are Products of Gamma Distributions

In a recent paper, using a splitting formula for the multi-dimensional Heisenberg group, we derived a formula for the vacuum characteristic function (Fourier transform) of quantum random variables defined as self-adjoint sums of Fock space operators satisfying the multidimensional Heisenberg Lie algebra commutation relations. In this paper we use that formula to compute the characteristic function of quantum random variables defined as suitably truncated sums of the Virasoro algebra generators. By relating the structure of the Virasoro fields to the quadratic quantization program and using techniques developed in that context we prove that the vacuum distributions of the truncated Virasoro fields are products of independent, but not identically distributed, shifted Gamma-random variables.