Ordinal Pattern Based Entropies and the Kolmogorov–Sinai Entropy: An Update
暂无分享,去创建一个
[1] K. Keller,et al. Kolmogorov-Sinai entropy via separation properties of order-generated $\sigma$-algebras , 2013, 1304.4450.
[2] Antonio Politi,et al. Permutation entropy revisited , 2018, Chaos, Solitons & Fractals.
[3] G. Keller,et al. Entropy of interval maps via permutations , 2002 .
[4] Karsten Keller,et al. An approach to comparing Kolmogorov-Sinai and permutation entropy , 2013 .
[5] Kohei Nakajima,et al. Permutation Complexity via Duality between Values and Orderings , 2011, ArXiv.
[6] K. Keller,et al. Equality of kolmogorov-sinai and permutation entropy for one-dimensional maps consisting of countably many monotone parts , 2018, Discrete & Continuous Dynamical Systems - A.
[7] Karsten Keller,et al. On the relation of KS entropy and permutation entropy , 2012, 1407.6473.
[8] B. Pompe,et al. Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.
[9] E. Hewitt,et al. On the fundamental ideas of measure theory , 1962 .
[10] José M. Amigó,et al. The equality of Kolmogorov–Sinai entropy and metric permutation entropy generalized , 2012 .
[11] M. Einsiedler,et al. Ergodic Theory: with a view towards Number Theory , 2010 .
[12] Wolfram Koepf,et al. The ordinal Kolmogorov-Sinai entropy: A generalized approximation , 2017, Commun. Nonlinear Sci. Numer. Simul..
[13] M. Mirzakhani,et al. Introduction to Ergodic theory , 2010 .
[14] D. Newton. AN INTRODUCTION TO ERGODIC THEORY (Graduate Texts in Mathematics, 79) , 1982 .
[15] L. Kocarev,et al. The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems , 2005, nlin/0503044.