暂无分享,去创建一个
Kevin Kröninger | Frederik Beaujean | Oliver Schulz | Allen Caldwell | Cornelius Grunwald | Vasyl Hafych | Salvatore La Cagnina | Lars Röhrig | Lolian Shtembari | F. Beaujean | V. Hafych | Cornelius Grunwald | K. Kröninger | O. Schulz | L. Shtembari | Lars Röhrig | Allen Caldwell
[1] M. Ciuchini,et al. Electroweak precision observables, new physics and the nature of a 126 GeV Higgs boson , 2013, 1306.4644.
[2] Zoubin Ghahramani,et al. Turing: A Language for Flexible Probabilistic Inference , 2018 .
[3] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[4] Martin Odersky,et al. Independently Extensible Solutions to the Expression Problem , 2004 .
[5] A. W. Kemp,et al. Kendall's Advanced Theory of Statistics. , 1994 .
[6] Patrick Kofod Mogensen,et al. Optim: A mathematical optimization package for Julia , 2018, J. Open Source Softw..
[7] D. Ghosh,et al. Extending the analysis of electroweak precision constraints in composite Higgs models , 2015, 1511.08235.
[8] A. Merle,et al. Global Bayesian analysis of neutrino mass data , 2017, 1705.01945.
[9] John Skilling,et al. Data analysis : a Bayesian tutorial , 1996 .
[10] M. Pierini,et al. Global Bayesian Analysis of the Higgs-boson Couplings , 2014, 1410.4204.
[11] Alan Edelman,et al. Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..
[12] M. Agostini,et al. Discovery probability of next-generation neutrinoless double- β decay experiments , 2017, 1705.02996.
[14] Thomas Hahn,et al. Cuba - a library for multidimensional numerical integration , 2004, Comput. Phys. Commun..
[15] Tim Besard,et al. Effective Extensible Programming: Unleashing Julia on GPUs , 2017, IEEE Transactions on Parallel and Distributed Systems.
[16] Allen Caldwell,et al. Target Density Normalization for Markov Chain Monte Carlo Algorithms , 2014, 1410.7149.
[17] P. Ullio,et al. A critical reassessment of particle Dark Matter limits from dwarf satellites , 2016, 1603.07721.
[18] S. Duane,et al. Hybrid Monte Carlo , 1987 .
[19] J. Erdmann,et al. A likelihood-based reconstruction algorithm for top-quark pairs and the KLFitter framework , 2013, 1312.5595.
[20] O. Luongo,et al. Cosmological degeneracy versus cosmography: a cosmographic dark energy model , 2015, 1512.07076.
[21] J. Erdmann,et al. Constraining top-quark couplings combining top-quark and B decay observables , 2020 .
[22] F. Beaujean. A Bayesian analysis of rare B decays with advanced Monte Carlo methods , 2012 .
[24] Kevin Kröninger,et al. BAT - The Bayesian Analysis Toolkit , 2008, Comput. Phys. Commun..
[25] Charles J. Geyer,et al. Practical Markov Chain Monte Carlo , 1992 .
[26] N. Kurz,et al. Hypernuclear production cross section in the reaction of 6 Li + 12 C at 2 A GeV , 2015 .
[27] Giulio D'Agostini,et al. BAYESIAN REASONING IN DATA ANALYSIS: A CRITICAL INTRODUCTION , 2003 .
[28] M. Pierini,et al. Update of the electroweak precision fit, interplay with Higgs-boson signal strengths and model-independent constraints on new physics☆ , 2014, 1410.6940.
[29] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[30] Miles Lubin,et al. Forward-Mode Automatic Differentiation in Julia , 2016, ArXiv.
[31] Steffen Schumann,et al. MC3 - A Multi-Channel Markov Chain Monte Carlo algorithm for phase-space sampling , 2014, Comput. Phys. Commun..
[32] Jiqiang Guo,et al. Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.
[33] Andrew Thomas,et al. WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..
[34] E. Jaynes. Probability theory : the logic of science , 2003 .
[36] Mark A. Moraes,et al. Parallel random numbers: As easy as 1, 2, 3 , 2011, 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC).
[37] Andrew Gelman,et al. Inference from Simulations and Monitoring Convergence , 2011 .
[38] John Salvatier,et al. Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..
[39] D. Lindley. Bayes theory , 1984 .
[40] Michael Innes,et al. Don't Unroll Adjoint: Differentiating SSA-Form Programs , 2018, ArXiv.
[41] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[42] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[43] M. Pierini,et al. The UTfit collaboration average of D meson mixing data: Winter 2014 , 2014, 1402.1664.
[44] Jorge Nocedal,et al. On the limited memory BFGS method for large scale optimization , 1989, Math. Program..
[45] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[46] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[47] Alan D. Martin,et al. Review of Particle Physics , 2010 .
[48] A. Sokal,et al. The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk , 1988 .
[49] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[50] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[51] A. Nozik,et al. Prototype of a segmented scintillator detector for particle flux measurements on spacecraft , 2020, Journal of Instrumentation.
[52] Michael Betancourt,et al. A Conceptual Introduction to Hamiltonian Monte Carlo , 2017, 1701.02434.
[53] P. Eller,et al. Integration with an adaptive harmonic mean algorithm , 2018, International Journal of Modern Physics A.