On Minimization Strategies for Choice of the Regularization Parameter in Ill-Posed Problems

We consider solving of linear ill-posed problems using the Tikhonov method (in self-adjoint case the Lavrentiev method), its iterated variant, Landweber method and conjugate gradient type methods. Several rules for a posteriori choice of the regularization parameter are proposed. In case of known noise level of data we propose to compute in Tikhonov method certain 2 parameters and take for regularization parameter minimal of them. In case of unknown noise level we consider family of rules where a certain function is minimized. The quasioptimality criterion and Hanke-Raus rule are included, error estimates are given. Extensive numerical experiments show an advantage of proposed rules over known rules.

[1]  U. Hamarik,et al.  On The Analog Of The Monotone Error Rule For Parameter Choice In The (Iterated) Lavrentiev Regularization , 2008 .

[2]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[3]  H. Gfrerer An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates , 1987 .

[4]  U. Hämarik,et al.  On the choice of the regularization parameter in ill-posed problems with approximately given noise level of data , 2006 .

[5]  Uno Hämarik,et al.  On the Monotone Error Rule for Parameter Choice in Iterative and Continuous Regularization Methods , 2001 .

[6]  Per Christian Hansen,et al.  Regularization methods for large-scale problems , 1993 .

[7]  M. Hanke Conjugate gradient type methods for ill-posed problems , 1995 .

[8]  Shuai Lu,et al.  On the balancing principle for some problems of Numerical Analysis , 2007, Numerische Mathematik.

[9]  Toomas Raus,et al.  About the balancing principle for choice of the regularization parameter , 2008 .

[10]  U. Hämarik,et al.  On the quasioptimal regularization parameter choices for solving ill-posed problems , 2007 .

[11]  F. Bauer,et al.  Some considerations concerning regularization and parameter choice algorithms , 2007 .

[12]  A. S. Leonov,et al.  Justification of the choice of regularization parameter according to quasi-optimality and quotient criteria , 1978 .

[13]  Toomas Raus,et al.  On numerical realization of quasioptimal parameter choices in (iterated) Tikhonov and Lavrentiev regularization , 2009 .

[14]  F. Bauer,et al.  The quasi-optimality criterion for classical inverse problems , 2008 .

[15]  V. Morozov On the solution of functional equations by the method of regularization , 1966 .

[16]  Stefan Kindermann,et al.  On the convergence of the quasioptimality criterion for (iterated) Tikhonov regularization , 2008 .

[17]  G. Vainikko The discrepancy principle for a class of regularization methods , 1982 .

[18]  Andreas Neubauer,et al.  The convergence of a new heuristic parameter selection criterion for general regularization methods , 2008 .

[19]  U. Hämarik,et al.  Extrapolation of Tikhonov and Lavrentiev regularization methods , 2008 .

[20]  Uno Hämarik,et al.  On rules for stopping the conjugate gradient type methods in ill‐posed problems , 2007 .

[21]  F. Bauer,et al.  Recent results on the quasi-optimality principle , 2009 .

[22]  Martin Hanke,et al.  The minimal error conjugate gradient method is a regularization method , 1995 .

[23]  P. Mathé The Lepskii principle revisited , 2006 .

[24]  Toomas Raus,et al.  New rule for choice of the regularization parameter in (iterated) tikhonov method , 2009 .

[25]  P. Mathé,et al.  Geometry of linear ill-posed problems in variable Hilbert scales Inverse Problems 19 789-803 , 2003 .

[26]  Uno Hämarik,et al.  The use of monotonicity for choosing the regularization parameter in ill-posed problems , 1999 .

[27]  Per Christian Hansen,et al.  REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.

[28]  G. Wahba Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy , 1977 .

[29]  Toomas Raus,et al.  Use of extrapolation in regularization methods , 2007 .

[30]  A. Bakushinskii Remarks on choosing a regularization parameter using the quasioptimality and ratio criterion , 1985 .

[31]  Martin Hanke,et al.  A General Heuristic for Choosing the Regularization Parameter in Ill-Posed Problems , 1996, SIAM J. Sci. Comput..

[32]  Markus Reiss,et al.  Regularization independent of the noise level: an analysis of quasi-optimality , 2007, 0710.1045.

[33]  A. Nemirovskii The regularizing properties of the adjoint gradient method in ill-posed problems , 1987 .

[34]  Claude Brezinski,et al.  Error estimates for linear systems with applications to regularization , 2008, Numerical Algorithms.

[35]  Sergei V. Pereverzyev,et al.  On the Adaptive Selection of the Parameter in Regularization of Ill-Posed Problems , 2005, SIAM J. Numer. Anal..