An Analytic Word Recognition Algorithm Using a Posteriori Probability

Word recognition algorithms are classified into two major groups. One is an "analytic" approach of recognizing individual characters, while the other is a "holistic" approach dealing with an entire word image. In the former approach, matching scores used to be calculated using heuristic functions, such as an average of confidence values on character recognition. In some non-heuristic studies, a stochastic evaluation function is employed, which is a ratio between an "a posteriori" probability and an "a priori" probability ("a posteriori" probability ratio). In this research, a new evaluation function is proposed, which is an improvement of "a posteriori" probability ratio. A result of an experiment using real images shows 9.1% improvement on handwritten word recognition.

[1]  Sargur N. Srihari,et al.  On-Line and Off-Line Handwriting Recognition: A Comprehensive Survey , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Jung-Hsien Chiang,et al.  Handwritten word recognition with character and inter-character neural networks , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[3]  Sargur N. Srihari,et al.  Off-Line Cursive Script Word Recognition , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Gyeonghwan Kim,et al.  A Lexicon Driven Approach to Handwritten Word Recognition for Real-Time Applications , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Cheng-Lin Liu,et al.  Lexicon-Driven Segmentation and Recognition of Handwritten Character Strings for Japanese Address Reading , 2002, IEEE Trans. Pattern Anal. Mach. Intell..