Coreduction Homology Algorithm for Regular CW-Complexes

In this paper we present a new algorithm for computing the homology of regular CW-complexes. This algorithm is based on the coreduction algorithm due to Mrozek and Batko and consists essentially of a geometric preprocessing algorithm for the standard chain complex generated by a CW-complex. By employing the concept of S-complexes the original chain complex can—in all known practical cases—be reduced to a significantly smaller S-complex with isomorphic homology, which can then be computed using standard methods. Furthermore, we demonstrate that in the context of non-uniform cubical grids this method significantly improves currently available algorithms based on uniform cubical grids.

[1]  William D. Kalies,et al.  Verified Homology Computations for Nodal Domains , 2009, Multiscale Model. Simul..

[2]  Marian Mrozek,et al.  Čech Type Approach to Computing Homology of Maps , 2010, Discret. Comput. Geom..

[3]  Jean-Guillaume Dumas,et al.  Computing Simplicial Homology Based on Efficient Smith Normal Form Algorithms , 2003, Algebra, Geometry, and Software Systems.

[4]  M. Mrozek,et al.  Homology Computation by Reduction of Chain Complexes , 1998 .

[5]  Arne Storjohann,et al.  Near optimal algorithms for computing Smith normal forms of integer matrices , 1996, ISSAC '96.

[6]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[7]  Topology-guided sampling of nonhomogeneous random processes , 2010, 1010.3128.

[8]  坂上 貴之 書評 Computational Homology , 2005 .

[9]  Nobuki Takayama,et al.  Algebra,Geometry and Software Systems , 2003 .

[10]  Konstantin Mischaikow,et al.  Probabilistic and numerical validation of homology computations for nodal domains , 2007 .

[11]  K. Mischaikow,et al.  Probabilistic validation of homology computations for nodal domains , 2007, 0707.4588.

[12]  W. Massey A basic course in algebraic topology , 1991 .

[13]  Marian Mrozek,et al.  Coreduction Homology Algorithm , 2009, Discret. Comput. Geom..

[14]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[15]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[16]  Yll Haxhimusa,et al.  Directly computing the generators of image homology using graph pyramids , 2009, Image Vis. Comput..

[17]  J. Craggs Applied Mathematical Sciences , 1973 .

[18]  Marian Mrozek,et al.  Coreduction homology algorithm for inclusions and persistent homology , 2010, Comput. Math. Appl..

[19]  Herbert Edelsbrunner,et al.  An incremental algorithm for Betti numbers of simplicial complexes , 1993, SCG '93.

[20]  Marian Mrozek,et al.  Homology algorithm based on acyclic subspace , 2008, Comput. Math. Appl..

[21]  Konstantin Mischaikow,et al.  Evolution of pattern complexity in the Cahn–Hilliard theory of phase separation , 2005 .

[22]  Britta Nestler Mathematical methods and models in phase transitions , 2005 .

[23]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[24]  K. Mischaikow,et al.  Computing Homology , 2001 .

[25]  Revaz Valerianovich Gamkrelidze,et al.  Topology and Geometry , 1970 .

[26]  J. Friedman,et al.  Computing Betti Numbers via Combinatorial Laplacians , 1996, STOC '96.

[27]  E. Fuller,et al.  Homology metrics for microstructure response fields in polycrystals , 2010 .