Distributionally Robust Submodular Maximization

Submodular functions have applications throughout machine learning, but in many settings, we do not have direct access to the underlying function $f$. We focus on stochastic functions that are given as an expectation of functions over a distribution $P$. In practice, we often have only a limited set of samples $f_i$ from $P$. The standard approach indirectly optimizes $f$ by maximizing the sum of $f_i$. However, this ignores generalization to the true (unknown) distribution. In this paper, we achieve better performance on the actual underlying function $f$ by directly optimizing a combination of bias and variance. Algorithmically, we accomplish this by showing how to carry out distributionally robust optimization (DRO) for submodular functions, providing efficient algorithms backed by theoretical guarantees which leverage several novel contributions to the general theory of DRO. We also show compelling empirical evidence that DRO improves generalization to the unknown stochastic submodular function.

[1]  Amin Karbasi,et al.  Gradient Methods for Submodular Maximization , 2017, NIPS.

[2]  Martin Jaggi,et al.  Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization , 2013, ICML.

[3]  Bryan Wilder,et al.  Equilibrium Computation and Robust Optimization in Zero Sum Games With Submodular Structure , 2017, AAAI.

[4]  Sébastien Bubeck,et al.  Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems , 2012, Found. Trends Mach. Learn..

[5]  Mohit Singh,et al.  Robust Submodular Maximization: Offline and Online Algorithms , 2017, ArXiv.

[6]  Massimiliano Pontil,et al.  Empirical Bernstein Bounds and Sample-Variance Penalization , 2009, COLT.

[7]  Hui Lin,et al.  A Class of Submodular Functions for Document Summarization , 2011, ACL.

[8]  Eric Balkanski,et al.  The limitations of optimization from samples , 2015, STOC.

[9]  Wei Chen,et al.  Robust Influence Maximization , 2016, KDD.

[10]  Robert S. Chen,et al.  Robust Optimization for Non-Convex Objectives , 2017, NIPS.

[11]  Jan Vondrák,et al.  Dependent Randomized Rounding via Exchange Properties of Combinatorial Structures , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[12]  Andreas Krause,et al.  Guaranteed Non-convex Optimization: Submodular Maximization over Continuous Domains , 2016, AISTATS.

[13]  Andreas Krause,et al.  Randomized Sensing in Adversarial Environments , 2011, IJCAI.

[14]  Jan Vondrák,et al.  Maximizing a Monotone Submodular Function Subject to a Matroid Constraint , 2011, SIAM J. Comput..

[15]  Amin Karbasi,et al.  Conditional Gradient Method for Stochastic Submodular Maximization: Closing the Gap , 2017, AISTATS.

[16]  Lada A. Adamic,et al.  The political blogosphere and the 2004 U.S. election: divided they blog , 2005, LinkKDD '05.

[17]  Yoram Singer,et al.  Efficient projections onto the l1-ball for learning in high dimensions , 2008, ICML '08.

[18]  Joseph Naor,et al.  A Unified Continuous Greedy Algorithm for Submodular Maximization , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[19]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[20]  John Duchi,et al.  Statistics of Robust Optimization: A Generalized Empirical Likelihood Approach , 2016, Math. Oper. Res..

[21]  Guanghui Lan The Complexity of Large-scale Convex Programming under a Linear Optimization Oracle , 2013, 1309.5550.

[22]  Mohit Singh,et al.  Structured Robust Submodular Maximization: Offline and Online Algorithms , 2017, AISTATS.

[23]  Eric Balkanski,et al.  The Power of Optimization from Samples , 2016, NIPS.

[24]  Matthew Richardson,et al.  Mining the network value of customers , 2001, KDD '01.

[25]  John C. Duchi,et al.  Variance-based Regularization with Convex Objectives , 2016, NIPS.

[26]  Morteza Zadimoghaddam,et al.  Probabilistic Submodular Maximization in Sub-Linear Time , 2017, ICML.

[27]  Abhimanyu Das,et al.  Submodular meets Spectral: Greedy Algorithms for Subset Selection, Sparse Approximation and Dictionary Selection , 2011, ICML.

[28]  Stefanie Jegelka,et al.  Robust Budget Allocation Via Continuous Submodular Functions , 2017, Applied Mathematics & Optimization.

[29]  Andreas Krause,et al.  Stochastic Submodular Maximization: The Case of Coverage Functions , 2017, NIPS.

[30]  Ben Taskar,et al.  Determinantal Point Processes for Machine Learning , 2012, Found. Trends Mach. Learn..

[31]  James B. Orlin,et al.  Robust monotone submodular function maximization , 2015, Mathematical Programming.

[32]  Pradeep Varakantham,et al.  Robust Influence Maximization: (Extended Abstract) , 2016, AAMAS.

[33]  Andrew E. B. Lim,et al.  Robust Empirical Optimization is Almost the Same As Mean-Variance Optimization , 2015, Oper. Res. Lett..

[34]  Martin J. Wainwright,et al.  High-Dimensional Statistics , 2019 .

[35]  H. B. McMahan,et al.  Robust Submodular Observation Selection , 2008 .

[36]  Amin Saberi,et al.  Correlation robust stochastic optimization , 2009, SODA '10.

[37]  Barbara Plank,et al.  Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies , 2011 .

[38]  John C. Duchi,et al.  Stochastic Gradient Methods for Distributionally Robust Optimization with f-divergences , 2016, NIPS.

[39]  Morteza Zadimoghaddam,et al.  Scalable Deletion-Robust Submodular Maximization: Data Summarization with Privacy and Fairness Constraints , 2018, ICML.

[40]  Volkan Cevher,et al.  Robust Submodular Maximization: A Non-Uniform Partitioning Approach , 2017, ICML.

[41]  Henry Lam,et al.  Robust Sensitivity Analysis for Stochastic Systems , 2013, Math. Oper. Res..

[42]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[43]  Andreas Krause,et al.  Deletion-Robust Submodular Maximization: Data Summarization with "the Right to be Forgotten" , 2017, ICML.

[44]  Andreas Krause,et al.  From MAP to Marginals: Variational Inference in Bayesian Submodular Models , 2014, NIPS.

[45]  Martin J. Wainwright,et al.  Randomized Smoothing for Stochastic Optimization , 2011, SIAM J. Optim..