Adaptive Stack Filtering with Application to Image Processin

With the aid of threshold decomposition, it is shown that optimal stack filters under the mean absolute error (MAE) criterion are equal to optimal (or Bayesian) classifiers subject to stacking constraints under the mean classification error (MCE) criterion. Nonadaptive and adaptive constrained least mean absolute (LMA) algorithms are developed for the esti- mation of stack filters through the linearization of the unit step function in the objective function. The convergence of the al- gorithms is proven under certain conditions. Although the methods do not generally give optimal stack filters under the MAE criterion, these algorithms have several distinct merits compared to other stack filter optimization methods: 1) the op- timization problem has a unique solution that approximates the optimal stack filters in the least mean square sense; 2) the meth- ods can be implemented in the binary and real domains; and 3) for stack filters defined by linearly separable positive Boolean functions (PBF's) or weighted order statistic (WOS) filters, the number of the parameters to be estimated is reduced to the window width of the filter. A comparison between images re- stored by the new algorithms and the stack filtering algorithm optimal under the MAE criterion confirms the effectiveness of the proposed algorithms.

[1]  Sze Tsen Hu,et al.  Threshold Logic , 1966 .

[2]  Elias Masry,et al.  Convergence analysis of adaptive linear estimation for dependent stationary processes , 1988, IEEE Trans. Inf. Theory.

[3]  William A. Porter Polylogic Realization of Switching Functions , 1980, IEEE Transactions on Computers.

[4]  Julius T. Tou,et al.  Pattern Recognition Principles , 1974 .

[5]  Ralph K. Cavin,et al.  Analysis of error-gradient adaptive linear estimators for a class of stationary dependent processes , 1982, IEEE Trans. Inf. Theory.

[6]  Petros Maragos Morphological correlation and mean absolute error criteria , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[7]  Shun-ichi Amari,et al.  A Theory of Adaptive Pattern Classifiers , 1967, IEEE Trans. Electron. Comput..

[8]  Edward J. Coyle,et al.  Minimum mean absolute error estimation over the class of generalized stack filters , 1990, IEEE Trans. Acoust. Speech Signal Process..

[9]  Moncef Gabbouj,et al.  Optimal stack filtering and the estimation and structural approaches to image processing , 1989, Sixth Multidimensional Signal Processing Workshop,.

[10]  Edward J. Coyle,et al.  Stack filters , 1986, IEEE Trans. Acoust. Speech Signal Process..

[11]  John W. Tukey,et al.  Nonlinear (nonsuperposable) methods for smoothing data , 1974 .

[12]  Yrjö Neuvo,et al.  FIR-median hybrid filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[13]  Jaakko Astola,et al.  Analysis of the properties of median and weighted median filters using threshold logic and stack filter representation , 1991, IEEE Trans. Signal Process..

[14]  Elias Masry,et al.  Constrained adaptive filtering algorithms: Asymptotic convergence properties for dependent data , 1989, IEEE Trans. Inf. Theory.

[15]  Yrjö Neuvo,et al.  A New Class of Detail-Preserving Filters for Image Processing , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  E. Gilbert Lattice Theoretic Properties of Frontal Switching Functions , 1954 .

[17]  T. Sellke,et al.  Adaptive stack filtering under the mean absolute error criterion , 1990 .

[18]  THOMAS P. DANIELL Adaptive Estimation with Mutually Correlated Training Sequences , 1970, IEEE Trans. Syst. Sci. Cybern..

[19]  B I Justusson,et al.  Median Filtering: Statistical Properties , 1981 .

[20]  Ehud Weinstein,et al.  Convergence analysis of LMS filters with uncorrelated Gaussian data , 1985, IEEE Trans. Acoust. Speech Signal Process..

[21]  Yrjö Neuvo,et al.  Adaptive weighted order statistic filters using back propagation algorithm , 1990, IEEE International Symposium on Circuits and Systems.

[22]  Hai Do-Tu,et al.  Learning Algorithms for Nonparametric Solution to the Minimum Error Classification Problem , 1978, IEEE Transactions on Computers.

[23]  H. Grady Rylander,et al.  A second-order adaptive Volterra filter with rapid convergence , 1987, IEEE Trans. Acoust. Speech Signal Process..

[24]  O. L. Frost,et al.  An algorithm for linearly constrained adaptive array processing , 1972 .

[25]  Jae-Kyoon Kim,et al.  Adaptive linear estimation for stationary M-dependent processes , 1975, IEEE Trans. Inf. Theory.

[26]  Jack Sklansky,et al.  Training a One-Dimensional Classifier to Minimize the Probability of Error , 1972, IEEE Trans. Syst. Man Cybern..

[27]  Gonzalo R. Arce,et al.  Detail-preserving ranked-order based filters for image processing , 1989, IEEE Trans. Acoust. Speech Signal Process..

[28]  M. K. Prasad,et al.  Weighted median filters: generation and properties , 1989, IEEE International Symposium on Circuits and Systems,.

[29]  G. Arce,et al.  Morphological filters: Statistics and further syntactic properties , 1987 .

[30]  Moncef Gabbouj,et al.  Minimum Mean Absolute Error Stack Filtering with Structural Constraints and Goals , 1990 .

[31]  Edward J. Coyle,et al.  Stack filters and the mean absolute error criterion , 1988, IEEE Trans. Acoust. Speech Signal Process..

[32]  Junghsi Lee,et al.  A fast recursive least-squares second order Volterra filter , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[33]  A. Kolmogorov,et al.  On Strong Mixing Conditions for Stationary Gaussian Processes , 1960 .