Numerical Methods and Results in the FPU Problem

[1]  Dario Bambusi,et al.  On Metastability in FPU , 2006 .

[2]  A. Giorgilli,et al.  Local chaotic behaviour in the Fermi-Pasta-Ulam system , 2005 .

[3]  G. Benettin,et al.  Time scale for energy equipartition in a two-dimensional FPU model. , 2005, Chaos.

[4]  L. Galgani,et al.  Localization of energy in FPU chains , 2004 .

[5]  M. Lega,et al.  First numerical evidence of global Arnold diffusion in quasi-integrable systems , 2004, nlin/0407059.

[6]  M. N. Vrahatis,et al.  Detecting order and chaos in Hamiltonian systems by the SALI method , 2004, nlin/0404058.

[7]  Simone Paleari,et al.  Exponentially long times to equipartition in the thermodynamic limit , 2004 .

[8]  Elena Lega,et al.  Detection of Arnold diffusion in Hamiltonian systems , 2003 .

[9]  Carles Simó,et al.  Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits , 2003 .

[10]  L. Galgani,et al.  The Fermi-Pasta-Ulam Problem , 2002 .

[11]  Elena Lega,et al.  On the Relationship Between Fast Lyapunov Indicator and Periodic Orbits for Continuous Flows , 2002 .

[12]  Elena Lega,et al.  On the numerical detection of the effective stability of chaotic motions in quasi-integrable systems , 2002 .

[13]  Ch. Skokos,et al.  Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits , 2001 .

[14]  Froeschle,et al.  Graphical evolution of the arnold web: from order to chaos , 2000, Science.

[15]  Bob W. Rink Symmetry and Resonance in Periodic FPU Chains , 2000, nlin/0007017.

[16]  Leonid A. Bunimovich,et al.  Dynamical Systems, Ergodic Theory and Applications , 2000 .

[17]  A. Lichtenberg,et al.  Energy equipartition starting from high-frequency modes in the Fermi-Pasta-Ulam beta oscillator chain. , 2000 .

[18]  A. Lichtenberg,et al.  Finite times to equipartition in the thermodynamic limit. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Marco Pettini,et al.  THE FERMI-PASTA-ULAM PROBLEM REVISITED : STOCHASTICITY THRESHOLDS IN NONLINEAR HAMILTONIAN SYSTEMS , 1996, chao-dyn/9609017.

[20]  A. Lichtenberg,et al.  Energy transitions and time scales to equipartition in the Fermi-Pasta-Ulam oscillator chain. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  M. A. Lieberman,et al.  Time scale to ergodicity in the Fermi-Pasta-Ulam system. , 1995, Chaos.

[22]  H. Kantz,et al.  Equipartition thresholds in chains of anharmonic oscillators , 1994 .

[23]  G. Benettin,et al.  On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms , 1994 .

[24]  Antonio Giorgilli,et al.  On the problem of energy equipartition for large systems of the Fermi-Pasta-Ulam type: analytical and numerical estimates , 1992 .

[25]  M. Pettini,et al.  Relaxation properties and ergodicity breaking in nonlinear Hamiltonian dynamics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[26]  H. Kantz Vanishing stability thresholds in the thermodynamic limit of nonintegrable conservative systems , 1989 .

[27]  L. Peliti,et al.  Approach to equilibrium in a chain of nonlinear oscillators , 1982 .

[28]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[29]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .

[30]  L. Galgani,et al.  Planck-like Distributions in Classical Nonlinear Mechanics , 1972 .

[31]  L. Galgani,et al.  Recent progress in classical nonlinear dynamics , 1972 .

[32]  L. Galgani,et al.  Zero-point energy in classical non-linear mechanics☆ , 1972 .

[33]  P. Bocchieri,et al.  Anharmonic Chain with Lennard-Jones Interaction , 1970 .

[34]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[35]  S. Ulam,et al.  Studies of nonlinear problems i , 1955 .

[36]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[37]  S. Paleari,et al.  RELAXATION TIMES TO EQUILIBRIUM IN FERMI-PASTA-ULAM SYSTEM , 2005 .

[38]  S. Paleari,et al.  Equipartition times in a Fermi-Pasta-Ulam system , 2005 .

[39]  Elena Lega,et al.  On the Structure of Symplectic Mappings. The Fast Lyapunov Indicator: a Very Sensitive Tool , 2000 .

[40]  Francesco Fassò,et al.  For Hamiltonian perturbation theory to symplectic , 1999 .

[41]  E. Lega,et al.  FAST LYAPUNOV INDICATORS. APPLICATION TO ASTEROIDAL MOTION , 1997 .

[42]  E. Hairer Backward analysis of numerical integrators and symplectic methods , 1994 .