Implementation of an intelligent sensor for measurement and prediction of solar radiation and atmospheric temperature
暂无分享,去创建一个
[1] Kenneth A. Buch,et al. Cloud classification using whole-sky imager data , 1995 .
[2] S V Szokolay,et al. Solar declination and the equation of time , 1984 .
[3] Lucas Alados-Arboledas,et al. Using a Sky Imager for aerosol characterization , 2008 .
[4] Josep Calbó,et al. Feature Extraction from Whole-Sky Ground-Based Images for Cloud-Type Recognition , 2008 .
[5] Sibbo van der Veen,et al. Cloud Detection Using Meteosat Imagery and Numerical Weather Prediction Model Data , 2000 .
[6] Soteris A. Kalogirou,et al. Artificial neural networks in renewable energy systems applications: a review , 2001 .
[7] L. Wald,et al. Using reduced data sets ISCCP-B2 from the Meteosat satellites to assess surface solar irradiance , 2007 .
[8] Moustafa T. Chahine,et al. Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount , 2007 .
[9] López-Cruz,et al. MODELOS ARX PARA PREDECIR LA TEMPERATURA DEL AIRE DE UN INVERNADERO: UNA METODOLOGÍA ARX MODELS FOR PREDICTING GREENHOUSE AIR TEMPERATURE: A METHODOLOGY , 2007 .
[10] Amauri Pereira de Oliveira,et al. A new algorithm to estimate sky condition based on 5 minutes-averaged values of clearness index and relative optical air mass , 2007 .
[11] António E. Ruano,et al. Neural network models in greenhouse air temperature prediction , 2002, Neurocomputing.
[12] I. Dimopoulos,et al. An application of artificial neural network models to estimate air temperature data in areas with sparse network of meteorological stations , 2008, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.
[13] Carlos M. Fonseca,et al. EVOLUTIONARY MULTIOBJECTIVE DESIGN OF RADIAL BASIS FUNCTION NETWORKS FOR GREENHOUSE ENVIRONMENTAL CONTROL , 2005 .
[14] Javier Hernández-Andrés,et al. Retrieval of the optical depth using an all-sky CCD camera. , 2008, Applied optics.
[15] Zhenhua Liu,et al. Cloud detection and analysis of MODIS image , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.
[16] Sunny Sun-Mack,et al. Cloud Detection in Nonpolar Regions for CERES Using TRMM VIRS and Terra and Aqua MODIS Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.
[17] F. S. Tymvios,et al. Comparative study of Ångström's and artificial neural networks' methodologies in estimating global solar radiation , 2005 .
[18] J. C. Winslow,et al. A globally applicable model of daily solar irradiance estimated from air temperature and precipitation data , 2001 .
[19] Peter J. Fleming,et al. Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.
[20] António E. Ruano,et al. Exploiting the separability of linear and nonlinear parameters in radial basis function networks , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).
[21] F. Anctil,et al. Comparison of empirical daily surface incoming solar radiation models , 2008 .
[22] Youlong Xia,et al. Interpolation of Daily Global Solar Radiation with Thin Plate Smoothing Splines , 2000 .
[23] Gabriel López,et al. Daily solar irradiation estimation over a mountainous area using artificial neural networks , 2008 .
[24] C. Long,et al. Cloud Coverage Based on All-Sky Imaging and Its Impact on Surface Solar Irradiance , 2003 .
[25] António E. Ruano,et al. Prediction of building's temperature using neural networks models , 2006 .
[26] B. M. Bowen,et al. Stability-class determination: a comparison for one site , 1983 .
[27] Waldo Ojeda Bustamante,et al. Modelos arx para predecir la temperatura del aire de un invernadero: una metodología , 2007 .