Deterministic Construction of Binary Measurement Matrices with Flexible Sizes

In this letter, a new framework for deterministically constructing binary measurement matrices of compressed sensing is presented. The proposed matrices are composed of (circulant) permutation submatrix blocks and zero submatrix blocks, which will make the hardware realization convenient and easy. In addition, while many existing deterministic measurement matrices may have strict restrictions to the number of rows, the proposed matrices have flexible sizes m n and nearly optimal coherence 1 O( p m) when m = O(n). Finally, several matrix examples based on

[1]  Stephen J. Dilworth,et al.  Explicit constructions of RIP matrices and related problems , 2010, ArXiv.

[2]  Shu-Tao Xia,et al.  Deterministic Constructions of Binary Measurement Matrices From Finite Geometry , 2013, IEEE Transactions on Signal Processing.

[3]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.

[4]  Alexandros G. Dimakis,et al.  LDPC Codes for Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[5]  Qin Huang,et al.  Quasi-Cyclic LDPC Codes: An Algebraic Construction, Rank Analysis, and Codes on Latin Squares , 2010, IEEE Transactions on Communications.

[6]  慧 廣瀬 A Mathematical Introduction to Compressive Sensing , 2015 .

[7]  Alexandros G. Dimakis,et al.  Optimal deterministic compressed sensing matrices , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[8]  Lloyd R. Welch,et al.  Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[9]  Mohamad Mahdi Mohades,et al.  A Reed-Solomon Code Based Measurement Matrix with Small Coherence , 2014, IEEE Signal Processing Letters.

[10]  Farrokh Marvasti,et al.  Deterministic Construction of Binary, Bipolar, and Ternary Compressed Sensing Matrices , 2009, IEEE Transactions on Information Theory.

[11]  Shu Lin,et al.  Transactions Papers - Constructions of Nonbinary Quasi-Cyclic LDPC Codes: A Finite Field Approach , 2008, IEEE Transactions on Communications.

[12]  Ronald A. DeVore,et al.  Deterministic constructions of compressed sensing matrices , 2007, J. Complex..

[13]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[14]  Marc E. Pfetsch,et al.  The Computational Complexity of the Restricted Isometry Property, the Nullspace Property, and Related Concepts in Compressed Sensing , 2012, IEEE Transactions on Information Theory.

[15]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[16]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[17]  Shu-Tao Xia,et al.  LDPC Codes Based on Berlekamp-Justesen Codes with Large Stopping Distances , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.

[18]  Na Zhao,et al.  Deterministic Construction of Real-Valued Ternary Sensing Matrices Using Optical Orthogonal Codes , 2013, IEEE Signal Processing Letters.

[19]  Gennian Ge,et al.  Deterministic Sensing Matrices Arising From Near Orthogonal Systems , 2014, IEEE Transactions on Information Theory.

[20]  Marc P. C. Fossorier,et al.  Quasi-Cyclic Low-Density Parity-Check Codes From Circulant Permutation Matrices , 2004, IEEE Trans. Inf. Theory.

[21]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[22]  Dustin G. Mixon,et al.  The Road to Deterministic Matrices with the Restricted Isometry Property , 2012, Journal of Fourier Analysis and Applications.

[23]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[24]  B. Hassibi,et al.  Compressed sensing over the Grassmann manifold: A unified analytical framework , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[25]  Shu-Tao Xia,et al.  A class of deterministic construction of binary compressed sensing matrices , 2012 .

[26]  Kidiyo Kpalma,et al.  Sparse Binary Matrices of LDPC Codes for Compressed Sensing , 2012, 2012 Data Compression Conference.

[27]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[28]  Gennian Ge,et al.  Deterministic Construction of Sparse Sensing Matrices via Finite Geometry , 2014, IEEE Transactions on Signal Processing.

[29]  Shu Lin,et al.  Construction of Quasi-Cyclic LDPC Codes for AWGN and Binary Erasure Channels: A Finite Field Approach , 2007, IEEE Transactions on Information Theory.

[30]  Selmer M. Johnson A new upper bound for error-correcting codes , 1962, IRE Trans. Inf. Theory.

[31]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[32]  Shu-Tao Xia,et al.  Constructions of quasi-cyclic measurement matrices based on array codes , 2013, 2013 IEEE International Symposium on Information Theory.