On Exact Polya, Hilbert-Artin and Putinar's Representations

We consider the problem of finding exact sums of squares (SOS) decompositions for certain classes of non-negative multivariate polynomials, relying on semidefinite programming (SDP) solvers. We provide a hybrid numeric-symbolic algorithm computing exact rational SOS decompositions for polynomials lying in the interior of the SOS cone. It computes an approximate SOS decomposition for a perturbation of the input polynomial with an arbitrary-precision SDP solver. An exact SOS decomposition is obtained thanks to the perturbation terms. We prove that bit complexity estimates on output size and runtime are both polynomial in the degree of the input polynomial and simply exponential in the number of variables. Next, we apply this algorithm to compute exact Polya, Hilbert-Artin's representation and Putinar's representations respectively for positive definite forms and positive polynomials over basic compact semi-algebraic sets. We also report on practical experiments done with the implementation of these algorithms and existing alternatives such as the critical point method and cylindrical algebraic decomposition.

[1]  Bin Li,et al.  Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars , 2008, ISSAC '08.

[2]  Mohab Safey El Din,et al.  Algorithms for Weighted Sums of Squares Decomposition of Non-negative Univariate Polynomials , 2017, ArXiv.

[3]  C. Hillar SUMS OF SQUARES OVER TOTALLY REAL FIELDS ARE RATIONAL SUMS OF SQUARES , 2007, 0704.2824.

[4]  Marc Giusti,et al.  Intrinsic complexity estimates in polynomial optimization , 2013, J. Complex..

[5]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[6]  Marc Moreno Maza,et al.  The RegularChains library in MAPLE , 2005, SIGS.

[7]  J. Harrison,et al.  Efficient and accurate computation of upper bounds of approximation errors , 2011, Theor. Comput. Sci..

[8]  Mohab Safey El Din,et al.  Testing Sign Conditions on a Multivariate Polynomial and Applications , 2007, Math. Comput. Sci..

[9]  Mohab Safey El Din,et al.  On Exact Polya and Putinar's Representations , 2018, ISSAC.

[10]  Maurice Mignotte,et al.  Mathematics for computer algebra , 1991 .

[11]  B. Reznick Extremal PSD forms with few terms , 1978 .

[12]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[13]  Marc Giusti,et al.  Generalized polar varieties: geometry and algorithms , 2005, J. Complex..

[14]  Frank Vallentin,et al.  On the Turing Model Complexity of Interior Point Methods for Semidefinite Programming , 2015, SIAM J. Optim..

[15]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[16]  Henri Lombardi,et al.  An Elementary Recursive Bound for Effective Positivstellensatz and Hilbert’s 17th problem , 2014, Memoirs of the American Mathematical Society.

[17]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[18]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[19]  Hazel Everett,et al.  The Voronoi Diagram of Three Lines , 2007, SCG '07.

[20]  Dima Grigoriev,et al.  Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..

[21]  Erich Kaltofen,et al.  Certificates of impossibility of Hilbert-Artin representations of a given degree for definite polynomials and functions , 2012, ISSAC.

[22]  James Haglund,et al.  Theorems and Conjectures Involving Rook Polynomials with Only Real Zeros , 1999 .

[23]  Bernard Mourrain,et al.  Moment matrices, border bases and real radical computation , 2011, J. Symb. Comput..

[24]  S. Basu,et al.  A New Algorithm to Find a Point in Every Cell Defined by a Family of Polynomials , 1998 .

[25]  E. Artin Über die Zerlegung definiter Funktionen in Quadrate , 1927 .

[26]  Bernd Sturmfels,et al.  The algebraic degree of semidefinite programming , 2010, Math. Program..

[27]  Lihong Zhi,et al.  Computing rational solutions of linear matrix inequalities , 2013, ISSAC '13.

[28]  Mohab Safey El Din,et al.  Probabilistic Algorithm for Polynomial Optimization over a Real Algebraic Set , 2013, SIAM J. Optim..

[29]  Lihong Zhi,et al.  Global optimization of polynomials using generalized critical values and sums of squares , 2010, ISSAC.

[30]  Fabrice Rouillier,et al.  Finding at Least One Point in Each Connected Component of a Real Algebraic Set Defined by a Single Equation , 2000, J. Complex..

[31]  Pablo A. Parrilo,et al.  Computing sum of squares decompositions with rational coefficients , 2008 .

[32]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[33]  Lihong Zhi,et al.  Global optimization of polynomials restricted to a smooth variety using sums of squares , 2012, J. Symb. Comput..

[34]  Mohab Safey El Din,et al.  Realcertify: a maple package for certifying non-negativity , 2018, ACCA.

[35]  Grigoriy Blekherman There are significantly more nonegative polynomials than sums of squares , 2003, math/0309130.

[36]  Frank Sottile,et al.  Real Schubert Calculus: Polynomial Systems and a Conjecture of Shapiro and Shapiro , 1999, Exp. Math..

[37]  Éric Schost,et al.  A Nearly Optimal Algorithm for Deciding Connectivity Queries in Smooth and Bounded Real Algebraic Sets , 2013, J. ACM.

[38]  C. Bachoc,et al.  New upper bounds for kissing numbers from semidefinite programming , 2006, math/0608426.

[39]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[40]  J. Demmel,et al.  On Floating Point Errors in Cholesky , 1989 .

[41]  Erich Kaltofen,et al.  A proof of the monotone column permanent (MCP) conjecture for dimension 4 via sums-of-squares of rational functions , 2009, SNC '09.

[42]  Ronan Quarez,et al.  Tight bounds for rational sums of squares over totally real fields , 2010 .

[43]  Mohab Safey El Din,et al.  Variant quantifier elimination , 2012, J. Symb. Comput..

[44]  Éric Schost,et al.  On the geometry of polar varieties , 2009, Applicable Algebra in Engineering, Communication and Computing.

[45]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[46]  Éric Schost,et al.  Polar varieties and computation of one point in each connected component of a smooth real algebraic set , 2003, ISSAC '03.

[47]  Markus Schweighofer,et al.  On the complexity of Putinar's Positivstellensatz , 2005, 0812.2657.

[48]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[49]  B. Reznick,et al.  Sums of squares of real polynomials , 1995 .

[50]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[51]  Lihong Zhi,et al.  Computing Rational Points in Convex Semialgebraic Sets and Sum of Squares Decompositions , 2010, SIAM J. Optim..

[52]  B. Reznick Uniform denominators in Hilbert's seventeenth problem , 1995 .

[53]  B. Bank,et al.  Polar varieties and efficient real elimination , 2000 .

[54]  César A. Muñoz,et al.  Formalization of Bernstein Polynomials and Applications to Global Optimization , 2013, Journal of Automated Reasoning.

[55]  Maho Nakata,et al.  A numerical evaluation of highly accurate multiple-precision arithmetic version of semidefinite programming solver: SDPA-GMP, -QD and -DD. , 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design.

[56]  Mohab Safey El Din,et al.  Exact algorithms for linear matrix inequalities , 2015, SIAM J. Optim..

[57]  Daniel Perrucci,et al.  On the minimum of a positive polynomial over the standard simplex , 2009, J. Symb. Comput..

[58]  Makoto Yamashita,et al.  A high-performance software package for semidefinite programs: SDPA 7 , 2010 .

[59]  S. Basu,et al.  Algorithms in Real Algebraic Geometry (Algorithms and Computation in Mathematics) , 2006 .