Hybrid Perovskites ; New Opportunities beyond Oxides

│Current studies on hybrid organic-inorganic perovskites (HOIPs) are predominantly focused on hybrid halides for photovoltaic and optoelectronic properties. However, the field of HOIPs is a much broader one that encompasses other important families, such as formates, azides, dicyanamides, cyanides and dicyanometallates. These HOIP materials have several common features, including not only the ABX3 structural architecture but also the presence of organic ammonium cations and their associated physical properties. These features lead to some remarkable behaviour, especially in the domain of phase transitions. In this review, we summarise the recent advances in the synthesis, structures and physical properties of all HOIP classes and discuss future opportunities in this exciting area. The word perovskite was coined to name the calcium titanium oxide mineral, CaTiO3, which was discovered in the Ural Mountains of Russia by the German mineralogist Gustav Rose and named in honour of the Russian Count, Lev A. Perovski. Nowadays, perovskite refers to a broad class of materials which have the same type of structure as CaTiO3, known as the perovskite structure. The general chemical formula

[1]  Thomas Kirchartz,et al.  Advanced Characterization Techniques for Thin Film Solar Cells , 2016 .

[2]  Sergei Tretiak,et al.  High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells , 2016, Nature.

[3]  Alexander C. Forse,et al.  Tuneable mechanical and dynamical properties in the ferroelectric perovskite solid solution [NH3NH2]1-x [NH3OH] x Zn(HCOO)3. , 2016, Chemical science.

[4]  Á. Alegría,et al.  Multiple phase and dielectric transitions on a novel multi-sensitive [TPrA][M(dca)3] (M: Fe2+, Co2+ and Ni2+) hybrid inorganic–organic perovskite family , 2016 .

[5]  P. Delugas,et al.  Low electron-polar optical phonon scattering as a fundamental aspect of carrier mobility in methylammonium lead halide CH3NH3PbI3 perovskites. , 2016, Physical chemistry chemical physics : PCCP.

[6]  A. Stroppa,et al.  Coexistence of Three Ferroic Orders in the Multiferroic Compound [(CH3 )4 N][Mn(N3 )3 ] with Perovskite-Like Structure. , 2016, Chemistry.

[7]  Feliciano Giustino,et al.  Electron–phonon coupling in hybrid lead halide perovskites , 2016, Nature Communications.

[8]  M. Saidaminov,et al.  The In‐Gap Electronic State Spectrum of Methylammonium Lead Iodide Single‐Crystal Perovskites , 2016, Advanced materials.

[9]  A. Goodwin,et al.  Dicyanometallates as Model Extended Frameworks , 2016, Journal of the American Chemical Society.

[10]  Yu Lin,et al.  High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties , 2016, ACS central science.

[11]  D. Mitzi,et al.  Inorganic Perovskites : Structural Versatility for Functional Materials Design , 2016 .

[12]  W. Windl,et al.  Cs2AgBiX6 (X: Br, Cl): New Visible Light Absorbing, Lead‐Free Halide Perovskite Semiconductors. , 2016 .

[13]  R. Palgrave,et al.  On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system , 2016, Chemical science.

[14]  Richard H. Friend,et al.  Photon recycling in lead iodide perovskite solar cells , 2016, Science.

[15]  F. Giustino,et al.  Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals. , 2016, The journal of physical chemistry letters.

[16]  Shijing Sun,et al.  The synthesis, structure and electronic properties of a lead-free hybrid inorganic–organic double perovskite (MA)2KBiCl6 (MA = methylammonium) , 2016, 1603.00537.

[17]  François-Xavier Coudert,et al.  Defects and disorder in metal organic frameworks. , 2016, Dalton transactions.

[18]  Aslihan Babayigit,et al.  Toxicity of organometal halide perovskite solar cells. , 2016, Nature materials.

[19]  Shengbai Zhang,et al.  Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects , 2016 .

[20]  A. Lindenberg,et al.  A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. , 2016, Journal of the American Chemical Society.

[21]  Song Gao,et al.  Temperature-Induced Irreversible Phase Transition From Perovskite to Diamond But Pressure-Driven Back-Transition in an Ammonium Copper Formate. , 2016, Angewandte Chemie.

[22]  M. Ma̧czka,et al.  Experimental and theoretical studies of structural phase transition in a novel polar perovskite-like [C2H5NH3][Na0.5Fe0.5(HCOO)3] formate. , 2016, Dalton transactions.

[23]  B. Pato-Doldán,et al.  Magnetic Ordering-Induced Multiferroic Behavior in [CH3NH3][Co(HCOO)3] Metal-Organic Framework. , 2016, Journal of the American Chemical Society.

[24]  M. Johnston,et al.  Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies. , 2016, Accounts of chemical research.

[25]  Young Sun,et al.  Observation of Resonant Quantum Magnetoelectric Effect in a Multiferroic Metal-Organic Framework. , 2016, Journal of the American Chemical Society.

[26]  David Cahen,et al.  Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties , 2016 .

[27]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[28]  Georg Kresse,et al.  Role of Polar Phonons in the Photo Excited State of Metal Halide Perovskites , 2015, Scientific Reports.

[29]  J. Luther,et al.  Observation of a hot-phonon bottleneck in lead-iodide perovskites , 2015, Nature Photonics.

[30]  Biwu Ma,et al.  Bright Light‐Emitting Diodes Based on Organometal Halide Perovskite Nanoplatelets , 2016, Advanced materials.

[31]  Á. Alegría,et al.  Role of Temperature and Pressure on the Multisensitive Multiferroic Dicyanamide Framework [TPrA][Mn(dca)3] with Perovskite-like Structure. , 2015, Inorganic chemistry.

[32]  N. Dalal,et al.  On Mn2+ EPR Probing of the Ferroelectric Transition and Absence of Magnetoelectric Coupling in Dimethylammonium Manganese Formate (CH3)2NH2Mn(HCOO)3, a Metal–Organic Complex with the Pb-Free Perovskite Framework , 2015 .

[33]  M. Johnston,et al.  Charge‐Carrier Dynamics and Mobilities in Formamidinium Lead Mixed‐Halide Perovskites , 2015, Advanced materials.

[34]  V. Podzorov,et al.  Charge Carriers in Hybrid Organic-Inorganic Lead Halide Perovskites Might Be Protected as Large Polarons. , 2015, The journal of physical chemistry letters.

[35]  A. Stroppa,et al.  Strain tuning of ferroelectric polarization in hybrid organic inorganic perovskite compounds. , 2015, The journal of physical chemistry letters.

[36]  L. Kronik,et al.  Are Mobilities in Hybrid Organic-Inorganic Halide Perovskites Actually "High"? , 2015, The journal of physical chemistry letters.

[37]  A. Kahn Hybrid Organic—Inorganic Perovskites (HOIPs): Opportunities and Challenges , 2015 .

[38]  Laura M. Herz,et al.  Temperature‐Dependent Charge‐Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films , 2015 .

[39]  R. Friend,et al.  Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide perovskites , 2015, Nature Communications.

[40]  Song Gao,et al.  An A-site mixed-ammonium solid solution perovskite series of [(NH2 NH3 )x (CH3 NH3 )1-x ][Mn(HCOO)3 ] (x=1.00-0.67). , 2015, Angewandte Chemie.

[41]  Bingbing Liu,et al.  Pressure-induced reversible phase transition and amorphization of CH$_3$NH$_3$PbI$_3$ , 2015, 1509.03717.

[42]  T. White,et al.  Mechanical properties of organic–inorganic halide perovskites, CH3NH3PbX3 (X = I, Br and Cl), by nanoindentation , 2015 .

[43]  X. Lü,et al.  Pressure-Induced Phase Transformation, Reversible Amorphization, and Anomalous Visible Light Response in Organolead Bromide Perovskite. , 2015, Journal of the American Chemical Society.

[44]  Sidney R. Cohen,et al.  Mechanical properties of APbX_3 (A = Cs or CH_3NH_3; X= I or Br) perovskite single crystals , 2015, 1508.04071.

[45]  A. Stroppa,et al.  Ferroelectric Polarization of CH3NH3PbI3: A Detailed Study Based on Density Functional Theory and Symmetry Mode Analysis. , 2015, The journal of physical chemistry letters.

[46]  Song Jin,et al.  Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. , 2015, Nature materials.

[47]  D. J. Clark,et al.  Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. , 2015, Journal of the American Chemical Society.

[48]  Philip Schulz,et al.  Electronic Level Alignment in Inverted Organometal Perovskite Solar Cells , 2015 .

[49]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[50]  Peter R. Slater,et al.  A combined single crystal neutron/X-ray diffraction and solid-state nuclear magnetic resonance study of the hybrid perovskites CH3NH3PbX3 (X = I, Br and Cl) , 2015 .

[51]  H. Snaith,et al.  Non-ferroelectric nature of the conductance hysteresis in CH3NH3PbI3 perovskite-based photovoltaic devices , 2015, 1504.05454.

[52]  Tonio Buonassisi,et al.  Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites , 2015, 1504.02144.

[53]  A. Marini,et al.  The mechanism of slow hot-hole cooling in lead-iodide perovskite: first-principles calculation on carrier lifetime from electron-phonon interaction. , 2015, Nano letters.

[54]  M. Ma̧czka,et al.  Synthesis and characterization of [(CH3)2NH2][Na0.5Cr0.5(HCOO)3]: a rare example of luminescent metal-organic frameworks based on Cr(III) ions. , 2015, Dalton transactions.

[55]  A. Cheetham,et al.  Role of hydrogen-bonding and its interplay with octahedral tilting in CH3NH3PbI3. , 2015, Chemical communications.

[56]  Dawei Di,et al.  Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. , 2015, Nano letters.

[57]  R. Xiong,et al.  Dynamics of a caged imidazolium cation-toward understanding the order-disorder phase transition and the switchable dielectric constant. , 2015, Chemical communications.

[58]  T. Hansen,et al.  Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. , 2015, Chemical communications.

[59]  H. Rensmo,et al.  Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures—A Photoelectron Spectroscopy Investigation , 2015 .

[60]  A. Stroppa,et al.  Room-temperature polar order in [NH4][Cd(HCOO)3]--a hybrid inorganic-organic compound with a unique perovskite architecture. , 2015, Inorganic chemistry.

[61]  K. P. Ong,et al.  Mechanical Origin of the Structural Phase Transition in Methylammonium Lead Iodide CH3NH3PbI3. , 2015, The journal of physical chemistry letters.

[62]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[63]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[64]  D. Sarma,et al.  Electronic Structure of CH3NH3PbX3 Perovskites : Dependence on the Halide Moiety , 2015 .

[65]  Chun He,et al.  Switchable guest molecular dynamics in a perovskite-like coordination polymer toward sensitive thermoresponsive dielectric materials. , 2015, Angewandte Chemie.

[66]  M. Ma̧czka,et al.  Synthesis, crystal structure, magnetic and vibrational properties of formamidine-templated Co and Fe formates , 2015 .

[67]  A. Stroppa,et al.  High‐temperature ferroelectricity and strong magnetoelectric effects in a hybrid organic–inorganic perovskite framework , 2015 .

[68]  Eric T. Hoke,et al.  Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file. , 2014, Chemical science.

[69]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[70]  Georg Kresse,et al.  Tunable ferroelectric polarization and its interplay with spin–orbit coupling in tin iodide perovskites , 2014, Nature Communications.

[71]  Song Gao,et al.  Metal–Organic Frameworks: Functional Magnetic Materials with Formate , 2014 .

[72]  H. Hagemann,et al.  Structure and properties of complex hydride perovskite materials , 2014, Nature Communications.

[73]  M. Ma̧czka,et al.  Synthesis and order-disorder transition in a novel metal formate framework of [(CH₃)₂NH₂]Na(0.5)Fe(0.5)(HCOO)₃]. , 2014, Dalton transactions.

[74]  Anthony K. Cheetham,et al.  Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog , 2014 .

[75]  Edward H Sargent,et al.  Conformal organohalide perovskites enable lasing on spherical resonators. , 2014, ACS nano.

[76]  Yuanyuan Zhou,et al.  Direct Observation of Ferroelectric Domains in Solution-Processed CH3NH3PbI3 Perovskite Thin Films. , 2014, The journal of physical chemistry letters.

[77]  Tze Chien Sum,et al.  Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. , 2014, Nano letters.

[78]  M. Grätzel The light and shade of perovskite solar cells. , 2014, Nature materials.

[79]  Felix Deschler,et al.  Bright light-emitting diodes based on organometal halide perovskite. , 2014, Nature nanotechnology.

[80]  A. Stroppa,et al.  Cross coupling between electric and magnetic orders in a multiferroic metal-organic framework , 2014, Scientific Reports.

[81]  Yingchao Zhao,et al.  Structural Transition in the Perovskite-like Bimetallic Azido Coordination Polymers: (NMe4)2[B′·B″(N3)6] (B′ = Cr3+, Fe3+; B″ = Na+, K+) , 2014 .

[82]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[83]  Jing Feng Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers , 2014 .

[84]  A. Cheetham,et al.  Mechanical tunability via hydrogen bonding in metal-organic frameworks with the perovskite architecture. , 2014, Journal of the American Chemical Society.

[85]  X. Moya,et al.  Caloric materials near ferroic phase transitions. , 2014, Nature materials.

[86]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[87]  M. Ma̧czka,et al.  Perovskite metal formate framework of [NH2-CH(+)-NH2]Mn(HCOO)3]: phase transition, magnetic, dielectric, and phonon properties. , 2014, Inorganic chemistry.

[88]  A. Freeman,et al.  Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites , 2014, Proceedings of the National Academy of Sciences.

[89]  Sandeep Kumar Pathak,et al.  High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. , 2014, The journal of physical chemistry letters.

[90]  Sung-Hoon Lee,et al.  The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite. , 2014, The journal of physical chemistry letters.

[91]  Philip Schulz,et al.  Interface energetics in organo-metal halide perovskite-based photovoltaic cells , 2014 .

[92]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[93]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[94]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[95]  Chun He,et al.  Above-room-temperature ferroelastic phase transition in a perovskite-like compound [N(CH3)4][Cd(N3)3]. , 2014, Chemical communications.

[96]  Aron Walsh,et al.  Electronic structure of hybrid halide perovskite photovoltaic absorbers , 2014, 1401.6993.

[97]  Song Gao,et al.  [NH2NH3][M(HCOO)3] (M = Mn2+, Zn2+, Co2+ and Mg2+): structural phase transitions, prominent dielectric anomalies and negative thermal expansion, and magnetic ordering , 2014 .

[98]  Song Gao,et al.  Phase transitions, prominent dielectric anomalies, and negative thermal expansion in three high thermally stable ammonium magnesium-formate frameworks. , 2014, Chemistry.

[99]  Xiufeng Han,et al.  Quantum tunneling of magnetization in a metal-organic framework. , 2014, Physical review letters.

[100]  M. Ma̧czka,et al.  Order-disorder transition and weak ferromagnetism in the perovskite metal formate frameworks of [(CH3)2NH2][M(HCOO)3] and [(CH3)2ND2][M(HCOO)3] (M = Ni, Mn). , 2014, Inorganic chemistry.

[101]  J. Even,et al.  DFT and k · p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells , 2014 .

[102]  Y. Chai,et al.  Electric control of magnetism in a multiferroic metal–organic framework , 2014 .

[103]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[104]  P. Jain,et al.  Tuning the ferroelectric polarization in a multiferroic metal-organic framework. , 2013, Journal of the American Chemical Society.

[105]  Xin-Yi Wang,et al.  Cation-dependent magnetic ordering and room-temperature bistability in azido-bridged perovskite-type compounds. , 2013, Journal of the American Chemical Society.

[106]  B. Pato-Doldán,et al.  Coexistence of magnetic and electrical order in the new perovskite-like (C3N2H5)[Mn(HCOO)3] formate , 2013 .

[107]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[108]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[109]  Aron Walsh,et al.  Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles , 2013, 1309.4215.

[110]  P. Jain,et al.  Ferroelasticity in a metal–organic framework perovskite; towards a new class of multiferroics , 2013 .

[111]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[112]  Young Sun,et al.  Magnetoelectric coupling in the paramagnetic state of a metal-organic framework , 2013, Scientific Reports.

[113]  A. Stroppa,et al.  Hybrid Improper Ferroelectricity in a Multiferroic and Magnetoelectric Metal‐Organic Framework , 2013, Advanced materials.

[114]  R. Graf,et al.  Tunable and switchable dielectric constant in an amphidynamic crystal. , 2013, Journal of the American Chemical Society.

[115]  P. Jain,et al.  Elastic relaxation behavior, magnetoelastic coupling, and order-disorder processes in multiferroic metal-organic frameworks , 2012 .

[116]  A. Gradišek,et al.  Phase transition and ring-puckering motion in a metal-organic perovskite [(CH2)3NH2][Zn(HCOO)3]. , 2012, The journal of physical chemistry. A.

[117]  Zhe-Ming Wang,et al.  Freezing of ring-puckering molecular motion and giant dielectric anomalies in metal-organic perovskites. , 2012, Chemistry, an Asian journal.

[118]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[119]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[120]  Song Gao,et al.  Zinc-diluted magnetic metal formate perovskites: synthesis, structures, and magnetism of [CH3NH3][Mn(x)Zn(1-x)(HCOO)3] (x = 0-1). , 2012, Chemistry, an Asian journal.

[121]  B. Pato-Doldán,et al.  Near room temperature dielectric transition in the perovskite formate framework [(CH3)2NH2][Mg(HCOO)3]. , 2012, Physical chemistry chemical physics : PCCP.

[122]  P. Jain,et al.  Influence of ligand field stabilization energy on the elastic properties of multiferroic MOFs with the perovskite architecture. , 2012, Dalton transactions.

[123]  R. Xiong,et al.  Ferroelectric metal-organic frameworks. , 2012, Chemical reviews.

[124]  S. Kurtz,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2011, IEEE Journal of Photovoltaics.

[125]  Takayoshi Nakamura,et al.  A multiferroic perdeutero metal-organic framework. , 2011, Angewandte Chemie.

[126]  Zhe-Ming Wang,et al.  Giant dielectric anomaly of a metal-organic perovskite with four-membered ring ammonium cations. , 2011, Angewandte Chemie.

[127]  R. Xiong,et al.  Metal—Organic Complex Ferroelectrics , 2011 .

[128]  P. Jain,et al.  Electric control of magnetization and interplay between orbital ordering and ferroelectricity in a multiferroic metal-organic framework. , 2011, Angewandte Chemie.

[129]  Song Gao,et al.  Irreversible transformation of chiral to achiral polymorph of K[Co(HCOO)3]: synthesis, structures, and magnetic properties. , 2011, Dalton transactions.

[130]  Polymeric potassium triformatocobalt(II) , 2011, Acta crystallographica. Section E, Structure reports online.

[131]  L. Paton,et al.  Structural diversity in non-layered hybrid perovskites of the RMCl3 family. , 2010, Angewandte Chemie.

[132]  K. Awaga,et al.  Exceptional dielectric phase transitions in a perovskite-type cage compound. , 2010, Angewandte Chemie.

[133]  Song Gao,et al.  Formate‐Based Magnetic Metal–Organic Frameworks Templated by Protonated Amines , 2010, Advanced materials.

[134]  M. A. Señarís-Rodríguez,et al.  Characterization of the order-disorder dielectric transition in the hybrid organic-inorganic perovskite-like formate Mn(HCOO)(3)[(CH(3))(2)NH(2)]. , 2010, Inorganic chemistry.

[135]  S. Ng,,et al.  Poly[dimethylammonium [tris(mu(2)-formato-kappa O-2:O `)cadmate(II)]] , 2010 .

[136]  Song Gao,et al.  Metal-organic perovskites: synthesis, structures, and magnetic properties of [C(NH2)3][M(II)(HCOO)3] (M = Mn, Fe, Co, Ni, Cu, and Zn; C(NH2)3 = guanidinium). , 2009, Chemistry.

[137]  P. Jain,et al.  Multiferroic behavior associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX3 architecture. , 2009, Journal of the American Chemical Society.

[138]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[139]  M. Caporali,et al.  Phase Transitions and CO2 Adsorption Properties of Polymeric Magnesium Formate , 2008 .

[140]  P. Jain,et al.  Order-disorder antiferroelectric phase transition in a hybrid inorganic-organic framework with the perovskite architecture. , 2008, Journal of the American Chemical Society.

[141]  Diederik S. Wiersma,et al.  The physics and applications of random lasers , 2008 .

[142]  Song Gao,et al.  Constructing magnetic molecular solids by employing three-atom ligands as bridges. , 2008, Chemical communications.

[143]  D. Leznoff,et al.  Synthesis, structure and magnetic properties of 2-D and 3-D [cation]{M[Au(CN)2]3} (M = Ni, Co) coordination polymers , 2007 .

[144]  I. Swainson,et al.  Pressure Response of an Organic−Inorganic Perovskite: Methylammonium Lead Bromide , 2007 .

[145]  David B. Mitzi,et al.  Synthesis, Structure, and Properties of Organic‐Inorganic Perovskites and Related Materials , 2007 .

[146]  N. Louvain,et al.  Reduced Band Gap Hybrid Perovskites Resulting from Combined Hydrogen and Halogen Bonding at the Organic−Inorganic Interface , 2007 .

[147]  C. Rao,et al.  Materials science. There's room in the middle. , 2007, Science.

[148]  J. Schlueter,et al.  Structural and magnetic diversity in tetraalkylammonium salts of anionic M[N(CN)2]3(-) (M = Mn and Ni) three-dimensional coordination polymers. , 2005, Inorganic chemistry.

[149]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[150]  Song Gao,et al.  Perovskite-like Metal Formates with Weak Ferromagnetism and as Precursors to Amorphous Materials. , 2004, Inorganic chemistry.

[151]  Bin Zhang,et al.  Anionic NaCl-type frameworks of [MnII(HCOO)3?], templated by alkylammonium, exhibit weak ferromagnetismElectronic supplementary information (ESI) available: Figs S1?S7: plots of ?T vs. T, temperature dependences of ac-susceptibilities, details around the long-range magnetic transitions, and isotherm , 2004 .

[152]  F. Renz,et al.  Poly[methylammonium-tris-(My2-formato-K2O:O)-cobalt(II)] , 2004 .

[153]  H. Wenk,et al.  Minerals: Their Constitution and Origin , 2004 .

[154]  D. Mitzi,et al.  PRESSURE-INDUCED PHASE TRANSITIONS AND TEMPLATING EFFECT IN THREE-DIMENSIONAL ORGANIC-INORGANIC HYBRID PEROVSKITES , 2003 .

[155]  Jie Ru,et al.  Cation-templated construction of three-dimensional α-Po cubic-type [M(dca)3]− networks. Syntheses, structures and magnetic properties of A[M(dca)3](dca = dicyanamide; for A = benzyltributylammonium, M = Mn2+, Co2+; for A = benzyltriethylammonium, M = Mn2+, Fe2+) , 2003 .

[156]  H. Stokes,et al.  Group-theoretical analysis of octahedral tilting in ferroelectric perovskites. , 2002, Acta crystallographica. Section B, Structural science.

[157]  David B. Mitzi,et al.  Templating and structural engineering in organic–inorganic perovskites , 2001 .

[158]  Nicola A. Hill,et al.  Why Are There so Few Magnetic Ferroelectrics , 2000 .

[159]  F. J. Pern,et al.  Photothermal stability of encapsulated Si solar cells and encapsulation materials upon accelerated exposures , 2000 .

[160]  Cherie R. Kagan,et al.  Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors , 1999, Science.

[161]  T. Rojo,et al.  Crystal Structure and Spectroscopic and Magnetic Properties of the Manganese(II) and Copper(II) Azido-Tetramethylammonium Systems. , 1999, Inorganic chemistry.

[162]  H. Stokes,et al.  Group-theoretical analysis of octahedral tilting in perovskites , 1998 .

[163]  P. Woodward Octahedral Tilting in Perovskites. I. Geometrical Considerations , 1997 .

[164]  P. Woodward Octahedral Tilting in Perovskites. II. Structure Stabilizing Forces , 1997 .

[165]  David B. Mitzi,et al.  Transport, Optical, and Magnetic Properties of the Conducting Halide Perovskite CH3NH3SnI3 , 1995 .

[166]  S. Parkin,et al.  Antiperovskite Structure with Ternary Tetrathiafulvalenium Salts: Construction, Distortion, and Antiferromagnetic Ordering , 1991 .

[167]  Albrecht Poglitsch,et al.  Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy , 1987 .

[168]  J. Bass,et al.  Orthorhombic perovskite CaTiO3 and CdTiO3: structure and space group , 1987 .

[169]  R. E. Marsh On the structure of Zn(C4H8N2O6) , 1986 .

[170]  F. Mautner,et al.  Preparation and structure determination of tetraethylammonium calcium azide, [N(C2H5)4]Ca(N3)3 , 1986 .

[171]  Herbert A. Pohl Giant polarization in high polymers , 1985, 1985 EIC 17th Electrical/Electronics Insulation Conference.

[172]  R. J. Nelson,et al.  Minority‐carrier lifetimes and internal quantum efficiency of surface‐free GaAs , 1978 .

[173]  D. Weber CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure , 1978 .

[174]  A. Glazer,et al.  Simple ways of determining perovskite structures , 1975 .

[175]  E. Sletten,et al.  The crystal structure of dimethylammonium copper(II) formate, NH2(CH2)2[Cu(OOCH)3] , 1973 .

[176]  A. M. Glazer,et al.  The classification of tilted octahedra in perovskites , 1972 .

[177]  J. J. Loferski,et al.  Photovoltaic Effect in GaAs p-n Junctions and Solar Energy Conversion , 1956 .

[178]  A. Hippel Ferroelectricity, Domain Structure, and Phase Transitions of Barium Titanate , 1950 .