Subdivision Based Interpolation with Shape Control

AbstractAn interpolation technique with the capability of local shape control for meshes of arbitrary topology is presented. The interpolation is a progressive process which iteratively updates the given mesh, through a two-phase Doo-Sabin subdivision scheme, until a control mesh whose limit surface interpolates the given mesh is reached. For each iteration of the progression, the two-phase scheme works by first applying a modified Doo-Sabin subdivision to the input mesh and then applying the regular Doo-Sabin subdivision to the resulting mesh. The modified Doo-Sabin subdivision carries a parameter for each face of the input mesh. These parameters provide required freedom to adjust the interpolating subdivision surface at the user’s command. Local shape control is possible. It is proved that the progressive interpolation process converges for any parameters between 0 and 1. Therefore, this is a well-defined process. The progressive interpolation process satisfies both the local and global properties. Henc...

[1]  M. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1978 .

[2]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[3]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[4]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[5]  Ahmad H. Nasri,et al.  Surface interpolation on irregular networks with normal conditions , 1991, Comput. Aided Geom. Des..

[6]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 1991 .

[7]  Tony DeRose,et al.  Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.

[8]  Leif Kobbelt,et al.  Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.

[9]  Peter Schröder,et al.  Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.

[10]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[11]  Peter Schröder,et al.  Fitting subdivision surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[12]  Deming Li The Star Chromatic Numbers of Some Planar Graphs Derived from Wheels , 2002 .

[13]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[14]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark (Figures 1 and 2) , 2004, Shape Modeling International Conference.

[15]  H. Bao,et al.  Totally positive bases and progressive iteration approximation , 2005 .

[16]  Jianmin Zheng,et al.  Making Doo-Sabin surface interpolation always work over irregular meshes , 2005, The Visual Computer.

[17]  Jianmin Zheng,et al.  Interpolation over arbitrary topology meshes using a two-phase subdivision scheme , 2006, IEEE Transactions on Visualization and Computer Graphics.

[18]  Fuhua Cheng,et al.  Similarity based interpolation using Catmull–Clark subdivision surfaces , 2006, The Visual Computer.

[19]  Takashi Maekawa,et al.  Interpolation by geometric algorithm , 2007, Comput. Aided Des..

[20]  Guojin Wang,et al.  Constructing iterative non-uniform B-spline curve and surface to fit data points , 2004, Science in China Series : Information Sciences.

[21]  Juan Manuel Peña,et al.  Progressive iterative approximation and bases with the fastest convergence rates , 2007, Comput. Aided Geom. Des..

[22]  C. D. Boor How does Agee ’ s smoothing method work ? , .