Digital Transformation Challenges for Universities: Ensuring Information Consistency Across Digital Services

Abstract Universities struggle to offer complete, up-to-date and consistent information about their key assets to their numerous users across various digital services and communication channels. Key assets include people, papers, books, dissertations, patents, courses, and research projects. The main difficulty stands in the intrinsic data fragmentation and data diversity: data about the key assets is scattered across multiple information silos, data is often duplicated and difficult to correlate due to the diversity in the format, metadata, conventions, and terminology used. We illustrate how this difficulty can be tackled and describe the work carried out at the University of Trento in Italy.

[1]  Maurizio Lenzerini,et al.  Data integration: a theoretical perspective , 2002, PODS.

[2]  Organización Internacional de Normalización ISO 25964-1 : Information and documentation -- Thesauri and interoperability with other vocabularies -- Part 1: Thesauri for information retrieval , 2011 .

[3]  Maja Zumer,et al.  Functional Requirements for Subject Authority Data (FRSAD): A Conceptual Model , 2011 .

[4]  Fausto Giunchiglia,et al.  Search and Analytics Challenges in Digital Libraries and Archives , 2016, JDIQ.

[5]  Vincenzo Maltese,et al.  Foundations of Digital Universities , 2017 .

[6]  Fausto Giunchiglia,et al.  Domains and context: First steps towards managing diversity in knowledge , 2012, J. Web Semant..

[7]  Asunción Gómez-Pérez,et al.  Evaluation of ontologies , 2001, International Journal of Intelligent Systems.

[8]  M. Anusha,et al.  Big Data-Survey , 2016 .

[9]  Edward T. O'neill,et al.  FRBR: Functional Requirements for Bibliographic Records Application of the Entity-Relationship Mo , 2002 .

[10]  Michael K. Buckland,et al.  Documentation, Information Science, and Library Science in the USA , 1996, Inf. Process. Manag..

[11]  Fausto Giunchiglia,et al.  From Knowledge Organization to Knowledge Representation , 2014 .

[12]  Herbert Van de Sompel,et al.  Resource Harvesting within the OAI-PMH Framework , 2004, D Lib Mag..

[13]  Lorin M. Hitt,et al.  Strength in Numbers: How Does Data-Driven Decisionmaking Affect Firm Performance? , 2011, ICIS 2011.

[14]  João Alberto de O. Lima,et al.  FRBR - Functional Requirements for Bibliographic Records , 2005 .

[15]  Ying Ding,et al.  VIVO: A Semantic Approach to Scholarly Networking and Discovery , 2012, Synthesis Lectures on the Semantic Web.

[16]  A. Gómez-Pérez,et al.  Evaluation of ontologies , 2001, Int. J. Intell. Syst..

[17]  L. Buchanan,et al.  A brief history of decision making. , 2006, Harvard business review.

[18]  Jaap-Henk Hoepman,et al.  PDF hosted at the Radboud Repository of the Radboud University Nijmegen , 2022 .

[19]  S. Fawcett,et al.  Data Science, Predictive Analytics, and Big Data: A Revolution that Will Transform Supply Chain Design and Management , 2013 .

[20]  Mirosław Kutyłowski,et al.  ICT Systems Security and Privacy Protection , 2018, IFIP Advances in Information and Communication Technology.

[21]  Fausto Giunchiglia,et al.  Modeling Recipes for Online Search , 2016, OTM Conferences.

[22]  Barbara Wixom,et al.  The Current State of Business Intelligence , 2007, Computer.