On the global existence of solutions to an aggregation model

Abstract In this paper we consider a reaction–diffusion–chemotaxis aggregation model of Keller–Segel type with a nonlinear, degenerate diffusion. Assuming that the diffusion function f ( n ) takes values sufficiently large, i.e. takes values greater than the values of a power function with sufficiently high power ( f ( n ) ⩾ δ n p for all n > 0 , where δ > 0 is a constant), we prove global-in-time existence of weak solutions. Since one of the main features of Keller–Segel type models is the possibility of blow-up of solutions in finite time, we will derive the uniform-in-time boundedness, which prevents the explosion of solutions. The uniqueness of solutions is proved provided that some higher regularity condition on solutions is known a priori. Finally, computational simulation results showing the effect of three different types of diffusion function are presented.

[1]  Dorothee D. Haroske,et al.  Function spaces, differential operators and nonlinear analysis , 1993 .

[2]  R. Kowalczyk,et al.  Preventing blow-up in a chemotaxis model , 2005 .

[3]  G. Oster,et al.  Cell traction models for generating pattern and form in morphogenesis , 1984, Journal of mathematical biology.

[4]  L Preziosi,et al.  Percolation, morphogenesis, and burgers dynamics in blood vessels formation. , 2003, Physical review letters.

[5]  M. Iruela-Arispe,et al.  Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. , 1992, Laboratory investigation; a journal of technical methods and pathology.

[6]  S. Luckhaus,et al.  Asymptotic profile with the optimal convergence rate for a parabolic equation of chemotaxis in super-critical cases , 2007 .

[7]  Herbert Amann,et al.  Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .

[8]  Gonzalo Galiano,et al.  On a quasilinear degenerate system arising in semiconductors theory. Part I: existence and uniqueness of solutions , 2001 .

[9]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[10]  D A Lauffenburger,et al.  Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. , 1991, Journal of theoretical biology.

[11]  L. Preziosi,et al.  On the stability of homogeneous solutions to some aggregation models , 2003 .

[12]  J. Murray,et al.  A mechanical model for the formation of vascular networks in vitro , 1996, Acta biotheoretica.

[13]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[14]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[15]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[16]  P. Tracqui,et al.  Mechanical signalling and angiogenesis. The integration of cell-extracellular matrix couplings. , 2000, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[17]  Benoît Perthame,et al.  PDE Models for Chemotactic Movements: Parabolic, Hyperbolic and Kinetic , 2004 .

[18]  Thomas Hillen,et al.  Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding , 2001, Adv. Appl. Math..

[19]  M. A. Herrero,et al.  Singularity patterns in a chemotaxis model , 1996 .

[20]  Dennis Bray,et al.  Cell Movements: From Molecules to Motility , 1992 .

[21]  José A. Carrillo,et al.  Volume effects in the Keller-Segel model : energy estimates preventing blow-up , 2006 .

[22]  H. Gajewski,et al.  Global Behaviour of a Reaction‐Diffusion System Modelling Chemotaxis , 1998 .

[23]  Tomasz Cieślak,et al.  Quasilinear non-uniformly parabolic-elliptic system modelling chemotaxis with volume filling effect. Existence and uniqueness of global-in-time solutions , 2007 .

[24]  V. Nanjundiah,et al.  Chemotaxis, signal relaying and aggregation morphology. , 1973, Journal of theoretical biology.

[26]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[27]  L. Preziosi,et al.  Modeling the early stages of vascular network assembly , 2003, The EMBO journal.

[28]  Piotr Biler,et al.  LOCAL AND GLOBAL SOLVABILITY OF SOME PARABOLIC SYSTEMS MODELLING CHEMOTAXIS , 1998 .

[29]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[30]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[31]  Y. Sugiyama Global existence and decay properties of solutions for some degenerate quasilinear parabolic systems modelling chemotaxis , 2005 .

[32]  M. A. Herrero,et al.  Chemotactic collapse for the Keller-Segel model , 1996, Journal of mathematical biology.

[33]  Dirk Horstmann,et al.  Boundedness vs. blow-up in a chemotaxis system , 2005 .

[34]  M. A. Herrero,et al.  A blow-up mechanism for a chemotaxis model , 1997 .

[35]  Dirk Horstmann,et al.  Lyapunov functions and $L^{p}$-estimates for a class of reaction-diffusion systems , 2001 .