On the global existence of solutions to an aggregation model
暂无分享,去创建一个
[1] Dorothee D. Haroske,et al. Function spaces, differential operators and nonlinear analysis , 1993 .
[2] R. Kowalczyk,et al. Preventing blow-up in a chemotaxis model , 2005 .
[3] G. Oster,et al. Cell traction models for generating pattern and form in morphogenesis , 1984, Journal of mathematical biology.
[4] L Preziosi,et al. Percolation, morphogenesis, and burgers dynamics in blood vessels formation. , 2003, Physical review letters.
[5] M. Iruela-Arispe,et al. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. , 1992, Laboratory investigation; a journal of technical methods and pathology.
[6] S. Luckhaus,et al. Asymptotic profile with the optimal convergence rate for a parabolic equation of chemotaxis in super-critical cases , 2007 .
[7] Herbert Amann,et al. Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .
[8] Gonzalo Galiano,et al. On a quasilinear degenerate system arising in semiconductors theory. Part I: existence and uniqueness of solutions , 2001 .
[9] A. Friedman. Partial Differential Equations of Parabolic Type , 1983 .
[10] D A Lauffenburger,et al. Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. , 1991, Journal of theoretical biology.
[11] L. Preziosi,et al. On the stability of homogeneous solutions to some aggregation models , 2003 .
[12] J. Murray,et al. A mechanical model for the formation of vascular networks in vitro , 1996, Acta biotheoretica.
[13] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[14] Dirk Horstmann,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .
[15] Daniel B. Henry. Geometric Theory of Semilinear Parabolic Equations , 1989 .
[16] P. Tracqui,et al. Mechanical signalling and angiogenesis. The integration of cell-extracellular matrix couplings. , 2000, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.
[17] Benoît Perthame,et al. PDE Models for Chemotactic Movements: Parabolic, Hyperbolic and Kinetic , 2004 .
[18] Thomas Hillen,et al. Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding , 2001, Adv. Appl. Math..
[19] M. A. Herrero,et al. Singularity patterns in a chemotaxis model , 1996 .
[20] Dennis Bray,et al. Cell Movements: From Molecules to Motility , 1992 .
[21] José A. Carrillo,et al. Volume effects in the Keller-Segel model : energy estimates preventing blow-up , 2006 .
[22] H. Gajewski,et al. Global Behaviour of a Reaction‐Diffusion System Modelling Chemotaxis , 1998 .
[23] Tomasz Cieślak,et al. Quasilinear non-uniformly parabolic-elliptic system modelling chemotaxis with volume filling effect. Existence and uniqueness of global-in-time solutions , 2007 .
[24] V. Nanjundiah,et al. Chemotaxis, signal relaying and aggregation morphology. , 1973, Journal of theoretical biology.
[26] L. Segel,et al. Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.
[27] L. Preziosi,et al. Modeling the early stages of vascular network assembly , 2003, The EMBO journal.
[28] Piotr Biler,et al. LOCAL AND GLOBAL SOLVABILITY OF SOME PARABOLIC SYSTEMS MODELLING CHEMOTAXIS , 1998 .
[29] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[30] W. Jäger,et al. On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .
[31] Y. Sugiyama. Global existence and decay properties of solutions for some degenerate quasilinear parabolic systems modelling chemotaxis , 2005 .
[32] M. A. Herrero,et al. Chemotactic collapse for the Keller-Segel model , 1996, Journal of mathematical biology.
[33] Dirk Horstmann,et al. Boundedness vs. blow-up in a chemotaxis system , 2005 .
[34] M. A. Herrero,et al. A blow-up mechanism for a chemotaxis model , 1997 .
[35] Dirk Horstmann,et al. Lyapunov functions and $L^{p}$-estimates for a class of reaction-diffusion systems , 2001 .