Information Geometry: Near Randomness and Near Independence

The main motivation for this book lies in the breadth of applications in which a statistical model is used to represent small departures from, for example, a Poisson process. Our approach uses information geometry to provide a common context but we need only rather elementary material from differential geometry, information theory and mathematical statistics. Introductory sections serve together to help those interested from the applications side in making use of our methods and results. Reported in this monograph is a body of results, and computer-algebraic methods that seem to have quite general applicability to statistical models admitting representation through parametric families of probability density functions. Some illustrations are given from a variety of contexts for geometric characterization of statistical states near to the three important standard basic reference states: (Poisson) randomness, uniformity, independence. The individual applications are somewhat heuristic models from various fields and we incline more to terminology and notation from the applications rather than from formal statistics. However, a common thread is a geometrical representation for statistical perturbations of the basic standard states, and hence results gain qualitative stability. Moreover, the geometry is controlled by a metric structure that owes its heritage through maximum likelihood to information theory so the quantitative features---lengths of curves, geodesics, scalar curvatures etc.---have some respectable authority. We see in the applications simple models for galactic void distributions and galaxy clustering, amino acid clustering along protein chains, cryptographic protection, stochastic fibre networks, coupled geometric features in hydrology and quantum chaotic behaviour.

[1]  A. Lupas Coiled coils: new structures and new functions. , 1996, Trends in biochemical sciences.

[2]  S. O. Prasher,et al.  Three‐Dimensional Quantification of Macropore Networks in Undisturbed Soil Cores , 1999 .

[3]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[4]  S. Ong Computation of bivariate gamma and inverted beta distribution functions , 1995 .

[5]  Sue Leurgans,et al.  Freund's bivariate exponential distribution and censoring , 1982 .

[6]  H. Phien Reservoir storage capacity with gamma inflows , 1993 .

[7]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[8]  Amit Sahai,et al.  Can Statistical Zero Knowledge Be Made Non-interactive? or On the Relationship of SZK and NISZK , 1998, CRYPTO.

[9]  L. Skovgaard A Riemannian geometry of the multivariate normal model , 1984 .

[10]  M. Schroeder Number Theory in Science and Communication , 1984 .

[11]  William W. Sampson,et al.  THE STRUCTURAL CHARACTERISATION OF FIBRE NETWORKS IN PAPERMAKING PROCESSES - A REVIEW , 2001 .

[12]  Luc Vincent,et al.  Morphological grayscale reconstruction in image analysis: applications and efficient algorithms , 1993, IEEE Trans. Image Process..

[13]  C. Dodson Spatial Statistics and Information Geometry for Parametric Statistical Models of Galaxy Clustering , 1999 .

[14]  Robert P. Kirshner,et al.  The Power Spectrum of Galaxy Clustering in the Las Campanas Redshift Survey , 1996 .

[15]  C. Dodson,et al.  Neighbourhoods of randomness and geometry of McKay bivariate gamma 3-manifold , 2004 .

[16]  J. Munkres,et al.  Calculus on Manifolds , 1965 .

[17]  David Slepian,et al.  Key papers in the development of information theory , 1974 .

[18]  Stefan M. Luthi,et al.  Quantitative Characterization of Carbonate Pore Systems by Digital Image Analysis , 1998 .

[19]  G. Kauffmann,et al.  Voids in the distribution of galaxies: an assessment of their significance and derivation of a void spectrum. , 1991 .

[20]  Simon D. M. White,et al.  The hierarchy of correlation functions and its relation to other measures of galaxy clustering , 1979 .

[21]  Pankaj Rohatgi,et al.  Towards Sound Approaches to Counteract Power-Analysis Attacks , 1999, CRYPTO.

[22]  Przeniyslaw Crzcgorzewski,et al.  Entropy-based goodness-of-fit test for exponentiality , 1999 .

[23]  A. Soshnikov Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.

[24]  C. Lai Construction of bivariate distributions by a generalised trivariate reduction technique , 1995 .

[25]  O. Bohigas,et al.  Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .

[26]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[27]  C. Dodson Geometry for stochastically inhomogeneous spacetimes , 2001 .

[28]  L. Amendola,et al.  Imprints of primordial voids on the cosmic microwave background , 1997 .

[29]  Christopher T. J. Dodson,et al.  Universal connection and curvature for statistical manifold geometry , 2007 .

[30]  U. Narayan Bhat,et al.  Estimation for renewal processes with unobservable gamma or Erlang interarrival times , 1997 .

[31]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[32]  L. Costa,et al.  Limits on the primordial fluctuation spectrum: void sizes and anisotropy of the cosmic microwave background radiation , 1993 .

[33]  V. A. Monarev,et al.  Using information theory approach to randomness testing , 2005 .

[34]  Olaf Wolkenhauer,et al.  Information-theoretic analysis of protein sequences shows that amino acids self-cluster. , 2002, Journal of theoretical biology.

[35]  F. Downton Bivariate Exponential Distributions in Reliability Theory , 1970 .

[36]  O. Barndorff-Nielsen,et al.  On quantum statistical inference , 2003, quant-ph/0307189.

[37]  Christopher T. J. Dodson,et al.  Iterative Approximation of Statistical Distributions and Relation to Information Geometry , 2001 .

[38]  Giulio Cossu,et al.  Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering. , 2005, Biomaterials.

[39]  Ray G. Gosine,et al.  Automated image analysis for applications in reservoir characterization , 2000, KES'2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No.00TH8516).

[40]  H. Matsuzoe On realization of conformally-projectively flat statistical manifolds and the divergences , 1998 .

[41]  Janise McNair,et al.  Mobility management in current and future communications networks , 1998, IEEE Netw..

[42]  J. M. Oller,et al.  AN EXPLICIT SOLUTION OF INFORMATION GEODESIC EQUATIONS FOR THE MULTIVARIATE NORMAL MODEL , 1991 .

[43]  S. Mallat A wavelet tour of signal processing , 1998 .

[44]  R. E. Miles,et al.  RANDOM POLYGONS DETERMINED BY RANDOM LINES IN A PLANE. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Konstantin Borovkov,et al.  Elements of Stochastic Modeling , 2003 .

[46]  William W. Sampson,et al.  Modeling a class of stochastic porous media , 1997 .

[47]  Richard A. Ketcham,et al.  Nondestructive high-resolution visualization and measurement of anisotropic effective porosity in complex lithologies using high-resolution X-ray computed tomography , 2005 .

[48]  C. Dodson,et al.  The pore radius distribution in paper. Part I: the effect of formation and grammage , 2003 .

[49]  J. Huchra,et al.  Voids and constraints on nonlinear clustering of galaxies , 1994 .

[50]  K. Schulgasser Fibre orientation in machine-made paper , 1985 .

[51]  C. Dodson,et al.  A metric space of test distributions for DPA and SZK proofs , 2000 .

[52]  C. Dodson,et al.  On the bundle of principal connections and the stability of b-incompleteness of manifolds , 1985, Mathematical Proceedings of the Cambridge Philosophical Society.

[53]  E. Wigner Random Matrices in Physics , 1967 .

[54]  Robert C. Griffiths,et al.  The Canonical Correlation Coefficients of Bivariate Gamma Distributions , 1969 .

[55]  R J Mortishire-Smith,et al.  Periodicity in alpha-helix lengths and C-capping preferences. , 1999, Journal of molecular biology.

[56]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[57]  Scale-invariance of galaxy clustering , 1997, astro-ph/9711073.

[58]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[59]  M. Berry,et al.  Level clustering in the regular spectrum , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[60]  I. Olkin,et al.  A generalized bivariate exponential distribution , 1967 .

[61]  D. Cox,et al.  Inference and Asymptotics , 1994 .

[62]  C. T. J. Dodson,et al.  Geometrization of statistical theory : proceedings of the GST Workshop, University of Lancaster, Department of Mathematics, 28-31 October 1987 , 1987 .

[63]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[64]  F. Hoyle,et al.  Voids in the Two-Degree Field Galaxy Redshift Survey , 2003, astro-ph/0312533.

[65]  C. Dodson,et al.  Neighbourhoods of independence and associated geometry in manifolds of bivariate Gaussian and Freund distributions , 2007 .

[66]  R. Govindaraju,et al.  Characterization of the rill geometry over straight hillslopes through spatial scales , 1992 .

[67]  Maurice G. Kendall,et al.  The Advanced Theory of Statistics, Vol. 2: Inference and Relationship , 1979 .

[68]  Yoshiharu Sato,et al.  The geometrical structure of the parameter space of the two-dimensional normal distribution , 1979 .

[69]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[70]  James Gleick,et al.  Chaos, Making a New Science , 1987 .

[71]  W. H. Williams,et al.  Probability Theory and Mathematical Statistics , 1964 .

[72]  Andreas Greiner,et al.  Electrospinning approaches toward scaffold engineering--a brief overview. , 2006, Artificial organs.

[73]  J. K. Ord,et al.  Handbook of the Poisson Distribution , 1967 .

[74]  Hind Taud,et al.  Porosity estimation method by X-ray computed tomography , 2005 .

[75]  William W. Sampson,et al.  Planar Line Processes for Void and Density Statistics in Thin Stochastic Fibre Networks , 2007 .

[76]  S. Maurogordato,et al.  Void probability function in the Southern Sky Redshift Survey , 1992 .

[77]  S. Shectman,et al.  LARGE-SCALE STRUCTURE IN THE LAS CAMPANAS REDSHIFT SURVEY , 1996 .

[78]  Michael Barr,et al.  The Emperor's New Mind , 1989 .

[79]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[80]  S. McKnight,et al.  The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. , 1988, Science.

[81]  Zeyun Yu,et al.  New algorithms in 3D image analysis and their application to the measurement of a spatialized pore size distribution in soils , 1999 .

[82]  H. Weyl,et al.  Space, Time, Matter , 1952 .

[83]  Kanti V. Mardia,et al.  Families of Bivariate Distributions , 1970 .

[84]  C. T. J. Dodson,et al.  Flow Simulation in Stochastic Porous Media , 2000, International Conference on Advances in System Simulation.

[85]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[86]  N. L. Johnson,et al.  Continuous Multivariate Distributions, Volume 1: Models and Applications , 2019 .

[87]  Robert C. Nichol,et al.  Higher Order Statistics from the Edinburgh/Durham Southern Galaxy Catalogue Survey. I. Counts in Cells , 1996 .

[88]  R. Al-Raoush,et al.  Extraction of physically realistic pore network properties from three-dimensional synchrotron X-ray microtomography images of unconsolidated porous media systems , 2005 .

[89]  U. Davis,et al.  Galaxy voids in cold dark matter universes , 2002, astro-ph/0208257.

[90]  Jacob Scharcanski,et al.  Information geometric similarity measurement for near-random stochastic processes , 2003, IEEE Trans. Syst. Man Cybern. Part A.

[91]  J. E. Freund A Bivariate Extension of the Exponential Distribution , 1961 .

[92]  Peter R. Johnston,et al.  Revisiting the most probable pore-size distribution in filter media: The gamma distribution , 1998 .

[93]  A. Richter,et al.  Experimental versus numerical eigenvalues of a Bunimovich stadium billiard: a comparison. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[94]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .

[95]  S. Maurogordato,et al.  A scaling law in the distribution of galaxy clusters , 1991 .

[96]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[97]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[98]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[99]  S. Warren,et al.  Aberrant Protein Deposition and Neurological Disease* , 1999, The Journal of Biological Chemistry.

[100]  Martin Ostoja-Starzewski,et al.  Particle sieving in a random fiber network , 2000 .

[101]  C. Dodson,et al.  Information geometric neighbourhoods of randomness and geometry of the McKay bivariate gamma 3-manifold , 2003 .

[102]  C. Dodson Quantifying galactic clustering and departures from randomness of the inter-galactic void probability function using information geometry , 2006, astro-ph/0608511.

[103]  P. S. Kim,et al.  Evidence that the leucine zipper is a coiled coil. , 1989, Science.

[104]  H. Matsuzoe Geometry of contrast functions and conformal geometry , 1999 .

[105]  C. Dodson,et al.  Sprays, universality and stability , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.

[106]  J. Bouma,et al.  Computed tomography as a tool for non-destructive analysis of flow patterns in macroporous clay soils. , 1995 .

[107]  The proportion of quadrilaterals formed by random lines in a plane , 1983 .

[108]  L. A. Cordero,et al.  Connections on principal S^1-bundles over compacta , 1994 .

[109]  Steven J. Miller,et al.  An Invitation to Modern Number Theory , 2020 .

[110]  M. Modugno Systems of vector valued forms on a fibred manifold and applications to gauge theories , 1987 .

[111]  Hans-Jörg Vogel,et al.  Topological characterization of pore space in soil — sample preparation and digital image-processing , 1996 .

[112]  F. Magnani,et al.  Multiscale geometrical reconstruction of porous structures. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[113]  C. Lai,et al.  Fisher information for downton's bivariate exponential distribution , 1998 .

[114]  P. Coles,et al.  Understanding recent observations of the largescale structure of the universe , 1990, Nature.

[115]  M. Berry,et al.  Semiclassical level spacings when regular and chaotic orbits coexist , 1984 .

[116]  W. Sampson Comments on the pore radius distribution in near-planar stochastic fibre networks , 2001 .

[117]  Steven Roman,et al.  Coding and information theory , 1992 .

[118]  A. T. McKay,et al.  Sampling from Batches , 1934 .

[119]  Takashi Kurose ON THE DIVERGENCES OF 1-CONFORMALLY FLAT STATISTICAL MANIFOLDS , 1994 .

[120]  B. Ripley Statistical inference for spatial processes , 1990 .

[121]  William W. Sampson,et al.  The effect of paper formation and grammage on its pore size distribution , 1996 .

[122]  M. Tribus Thermostatics and thermodynamics , 1961 .

[123]  C. Dodson Information geodesics for gamma models of communication clustering , 2000 .

[124]  G. Efstathiou Counts-in-cells comparisons of redshift surveys , 1995 .

[125]  Gabriel Kron,et al.  Diakoptics : the piecewise solution of large-scale systems , 1963 .

[126]  E. Moreau,et al.  Pore networks in an Italian Vertisol: quantitative characterisation by two dimensional image analysis , 1996 .

[127]  S. Yue,et al.  A review of bivariate gamma distributions for hydrological application , 2001 .

[128]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[129]  Chin-Yuan Hu,et al.  On a Characterization of the Gamma Distribution: The Independence of the Sample Mean and the Sample Coefficient of Variation , 1999 .

[130]  R. E. Miles RANDOM POLYGONS DETERMINED BY RANDOM LINES IN A PLANE, II. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[131]  R. N. Onody,et al.  Experimental studies of the fingering phenomena in two dimensions and simulation using a modified invasion percolation model , 1995 .