Challenges of analytical microsystems

Miniaturization in analytical chemistry is a clear trend, and has been the subject of an important number of research works. In this article, we present a general overview of the potential of analytical microsystems. Although clear advantages can be pointed out, we offer a critical evaluation based on highlighting strengths and weaknesses. Thinking about the future use of the current analytical microsystems in routine and control analytical laboratories, we discuss the issues involved in the analytical process and the different steps involved in chemical analyses. We identify challenges in applying analytical microsystems to these uses.

[1]  Gang Chen,et al.  Carbon-nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates. , 2004, The Analyst.

[2]  A. Manz,et al.  Micro total analysis systems. Recent developments. , 2004, Analytical chemistry.

[3]  Gillian M. Greenway,et al.  Interfacing a microfluidic electrophoresis chip with inductively coupled plasma mass spectrometry for rapid elemental speciation , 2004 .

[4]  Hui-Ling Lee,et al.  Microchip capillary electrophoresis with amperometric detection for several carbohydrates. , 2004, Talanta.

[5]  V. Dolnik,et al.  Capillary electrophoresis on microchip , 2000, Electrophoresis.

[6]  Manabu Tokeshi,et al.  Peer Reviewed: Thermal Lens Microscopy and Microchip Chemistry , 2004 .

[7]  Leandro Lorenzelli,et al.  Development of a gas chromatography silicon-based microsystem in clinical diagnostics. , 2005, Biosensors & bioelectronics.

[8]  K. Mogensen,et al.  Recent developments in detection for microfluidic systems , 2004, Electrophoresis.

[9]  Charles S Henry,et al.  Recent progress in the development of muTAS for clinical analysis. , 2003, The Analyst.

[10]  Mark S Anderson Microfluidics and chromatography with an atomic force microscope. , 2005, Analytical chemistry.

[11]  Laszlo Szekely,et al.  Study of the electroosmotic flow as a means to propel the mobile phase in capillary electrochromatography in view of further miniaturization of capillary electrochromatography systems , 2005, Electrophoresis.

[12]  Henrik Jensen,et al.  Passive conductivity detection for capillary electrophoresis. , 2004, Analytical chemistry.

[13]  Gillian M. Greenway,et al.  Interfacing microchip capillary electrophoresis with inductively coupled plasma mass spectrometry for chromium speciation , 2003 .

[14]  G. Bruin,et al.  Recent developments in electrokinetically driven analysis on microfabricated devices , 2000, Electrophoresis.

[15]  Alberto Escarpa,et al.  Micromachined Separation Chips with Post‐Column Enzymatic Reactions of “Class” Enzymes And End‐Column Electrochemical Detection: Assays of Amino Acids , 2002 .

[16]  Ashok Mulchandani,et al.  Microchip capillary electrophoresis with electrochemical detection of thiol-containing degradation products of V-type nerve agents. , 2004, Analytical chemistry.

[17]  P. Hauser,et al.  Conductimetric and potentiometric detection in conventional and microchip capillary electrophoresis , 2002, Electrophoresis.

[18]  Susan M Lunte,et al.  Development of a microfabricated palladium decoupler/electrochemical detector for microchip capillary electrophoresis using a hybrid glass/poly(dimethylsiloxane) device. , 2004, Analytical chemistry.

[19]  Robert S. Keynton,et al.  Design and development of microfabricated capillary electrophoresis devices with electrochemical detection , 2004 .

[20]  F. Regnier,et al.  Microfabricated liquid chromatography columns based on collocated monolith support structures. , 1998, Journal of pharmaceutical and biomedical analysis.

[21]  Qun Fang Sample introduction for microfluidic systems , 2004, Analytical and bioanalytical chemistry.

[22]  Nigel Beard,et al.  Dealing with real samples: sample pre-treatment in microfluidic systems. , 2003, Lab on a chip.

[23]  B. Weigl,et al.  Lab-on-a-chip for drug development. , 2003, Advanced drug delivery reviews.

[24]  Martin Pumera,et al.  Dual conductivity/amperometric detection system for microchip capillary electrophoresis. , 2002, Analytical chemistry.

[25]  Pier Giorgio Righetti,et al.  Bioanalysis: Its past, present, and some future , 2004, Electrophoresis.

[26]  A. deMello,et al.  On-chip chromatography: the last twenty years. , 2002 .

[27]  Gwo-Bin Lee,et al.  Microautosamplers for discrete sample injection and dispensation , 2005, Electrophoresis.

[28]  Peter Ertl,et al.  Capillary electrophoresis chips with a sheath-flow supported electrochemical detection system. , 2004, Analytical chemistry.

[29]  M. Gijs,et al.  Pressure pulse injection: a powerful alternative to electrokinetic sample loading in electrophoresis microchips. , 2003, Analytical chemistry.

[30]  N Tait,et al.  Fabrication of nanocolumns for liquid chromatography. , 1998, Analytical chemistry.

[31]  M. Ursem,et al.  Instrumental requirements for nanoscale liquid chromatography. , 1996, Analytical chemistry.

[32]  Vincent T Remcho,et al.  Microscale liquid phase separations , 2002, Analytical and bioanalytical chemistry.

[33]  A. Manz,et al.  Design of an open-tubular column liquid chromatograph using silicon chip technology , 1990 .

[34]  Gillian M. Greenway,et al.  Sample manipulation in micro total analytical systems , 2002 .

[35]  Igor L. Medintz,et al.  Single-molecule DNA amplification and analysis in an integrated microfluidic device. , 2001, Analytical chemistry.

[36]  Albert van den Berg,et al.  New approaches for fabrication of microfluidic capillary electrophoresis devices with on‐chip conductivity detection , 2001, Electrophoresis.

[37]  P. Yager,et al.  Microfluidic Diffusion-Based Separation and Detection , 1999, Science.

[38]  Joseph Wang,et al.  Electrochemical detection for microscale analytical systems: a review. , 2002, Talanta.

[39]  Jean M. J. Fréchet,et al.  Continuous rods of macroporous polymer as high-performance liquid chromatography separation media , 1992 .

[40]  Risto Kostiainen,et al.  Introduction to micro-analytical systems: bioanalytical and pharmaceutical applications. , 2003, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[41]  Ford,et al.  Polymeric microelectromechanical systems , 2000, Analytical chemistry.

[42]  Ursula Bilitewski,et al.  Biochemical analysis with microfluidic systems , 2003, Analytical and bioanalytical chemistry.

[43]  M. Schwarz,et al.  Recent developments in detection methods for microfabricated analytical devices. , 2001, Lab on a chip.

[44]  Noritada Kaji,et al.  Nanospheres for DNA separation chips , 2004, Nature Biotechnology.

[45]  L Ramos,et al.  Miniaturization in sample treatment for environmental analysis , 2005, Analytical and bioanalytical chemistry.

[46]  Charles S Henry,et al.  Simple and sensitive electrode design for microchip electrophoresis/electrochemistry. , 2004, Analytical chemistry.

[47]  Salvador Alegret,et al.  Integrated Analytical Systems , 2003 .

[48]  Takehiko Kitamori,et al.  Development of a microchip-based bioassay system using cultured cells. , 2005, Analytical chemistry.

[49]  G. Whitesides,et al.  Torque-actuated valves for microfluidics. , 2005, Analytical chemistry.

[50]  S. Terry,et al.  A gas chromatographic air analyzer fabricated on a silicon wafer , 1979, IEEE Transactions on Electron Devices.

[51]  Akira Fujishima,et al.  Microchip capillary electrophoresis with a boron-doped diamond electrode for rapid separation and detection of purines. , 2004, Journal of chromatography. A.

[52]  Saverio Mannino,et al.  Microchip capillary electrophoresis with amperometric detection for rapid separation and detection of phenolic acids. , 2004, Journal of chromatography. A.

[53]  Jun Kameoka,et al.  Chip-based P450 drug metabolism coupled to electrospray ionization-mass spectrometry detection. , 2003, Analytical chemistry.

[54]  J Wang,et al.  Electrochemical enzyme immunoassays on microchip platforms. , 2001, Analytical chemistry.

[55]  Frank-Michael Matysik,et al.  A chip-based electrophoresis system with electrochemical detection and hydrodynamic injection. , 2002, Analytical chemistry.

[56]  Minoru Seki,et al.  Pressure-Driven Sample Injection with Quantitative Liquid Dispensing for On-Chip Electrophoresis , 2004, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[57]  Shawn D. Llopis,et al.  Contact conductivity detection in poly(methyl methacrylate)-based microfluidic devices for analysis of mono- and polyanionic molecules. , 2002, Analytical chemistry.

[58]  J. Michael Ramsey,et al.  Microfluidic Assays of Acetylcholinesterase Inhibitors , 1999 .

[59]  Martin Pumera,et al.  Contactless conductivity detector for microchip capillary electrophoresis. , 2002, Analytical chemistry.

[60]  Brian N. Johnson,et al.  An integrated nanoliter DNA analysis device. , 1998, Science.

[61]  Jan Lichtenberg,et al.  Sample pretreatment on microfabricated devices. , 2002, Talanta.

[62]  Hizuru Nakajima,et al.  Detection method for microchip separations , 2004, Analytical and bioanalytical chemistry.

[63]  Jaromir Ruzicka,et al.  Atomic absorption spectroscopy for mercury, automated by sequential injection and miniaturized in lab-on-valve system. , 2005, Analytical chemistry.

[64]  Joseph Wang,et al.  On-chip integration of enzyme and immunoassays: simultaneous measurements of insulin and glucose. , 2003, Journal of the American Chemical Society.

[65]  Gang Chen,et al.  Fast and simple sample introduction for capillary electrophoresis microsystems. , 2004, The Analyst.

[66]  Mitsuyoshi Ueda,et al.  Development of miniaturized multi-channel high-performance liquid chromatography for high-throughput analysis. , 2005, Journal of chromatography. A.

[67]  J Wang,et al.  Micromachined separation chips with a precolumn reactor and end-column electrochemical detector. , 2000, Analytical chemistry.

[68]  Susan M Lunte,et al.  Recent developments in amperometric detection for microchip capillary electrophoresis , 2002, Electrophoresis.

[69]  Angel Ríos Castro,et al.  Analysis and detection by capillary electrophoresis , 2005 .

[70]  Alberto Escarpa,et al.  Fast and simultaneous detection of prominent natural antioxidants using analytical microsystems for capillary electrophoresis with a glassy carbon electrode: A new gateway to food environments , 2005, Electrophoresis.

[71]  F. Regnier,et al.  Microfabricated filters for microfluidic analytical systems. , 1999, Analytical chemistry.

[72]  Nicolas Sillon,et al.  Micromachined mass spectrometer , 2002 .

[73]  Mizuo Maeda,et al.  Autonomous polymer loading and sample injection for microchip electrophoresis. , 2005, Analytical chemistry.

[74]  Gwo-Bin Lee,et al.  Automation for continuous analysis on microchip electrophoresis using flow‐through sampling , 2002, Electrophoresis.

[75]  A. Manz,et al.  Miniaturized total chemical analysis systems: A novel concept for chemical sensing , 1990 .

[76]  Charles S Henry,et al.  Analysis of natural flavonoids by microchip-micellar electrokinetic chromatography with pulsed amperometric detection. , 2005, The Analyst.

[77]  Peter Woias,et al.  Micropumps—past, progress and future prospects , 2005 .

[78]  J Michael Ramsey,et al.  Sample filtration, concentration, and separation integrated on microfluidic devices. , 2003, Analytical chemistry.

[79]  Bogusław Buszewski,et al.  State of the Art in Miniaturized Separation Techniques , 2002 .

[80]  Gang Chen,et al.  Capillary electrophoresis microchip with a carbon nanotube-modified electrochemical detector. , 2004, Analytical chemistry.