Simultaneous input and state smoothing and its application to oceanographic flow field reconstruction

Forward-backward smoothing of unknown inputs and states of a nonlinear system is studied in this paper, motivated by oceanographic flow field reconstruction using a swarm of buoyancy-controlled drogues. A Bayesian paradigm is developed first to provide a statistics based solution framework. A nonlinear maximum a posteriori (MAP) optimization problem is established within the framework as a means to achieve simultaneous input and state smoothing, which is solved by the iteration based Gauss-Newton method. Application of the proposed method to reconstruction of a complex three-dimensional flow field is investigated via simulation studies.

[1]  T. Floquet,et al.  On Sliding Mode Observers for Systems with Unknown Inputs , 2006, International Workshop on Variable Structure Systems, 2006. VSS'06..

[2]  F. W. Cathey,et al.  The iterated Kalman filter update as a Gauss-Newton method , 1993, IEEE Trans. Autom. Control..

[3]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[4]  Q. P. Haa,et al.  State and input simultaneous estimation for a class of nonlinear systems , 2004 .

[5]  J. Mendel White-noise estimators for seismic data processing in oil exploration , 1977 .

[6]  Udo Schubert,et al.  Input reconstruction for statistical‐based fault detection and isolation , 2012 .

[7]  Bart De Moor,et al.  Unbiased minimum-variance input and state estimation for linear discrete-time systems , 2007, Autom..

[8]  Peter K. Kitanidis,et al.  Unbiased minimum-variance linear state estimation , 1987, Autom..

[9]  Huazhen Fang,et al.  Nonlinear simultaneous input and state estimation with application to flow field estimation , 2011, IEEE Conference on Decision and Control and European Control Conference.

[10]  L. Fridman,et al.  Exact state estimation for linear systems with unknown inputs based on hierarchical super‐twisting algorithm , 2007 .

[11]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[12]  James V. Candy,et al.  Bayesian Signal Processing: Classical, Modern and Particle Filtering Methods , 2009 .

[13]  Chien-Shu Hsieh,et al.  Robust two-stage Kalman filters for systems with unknown inputs , 2000, IEEE Trans. Autom. Control..

[14]  D. Booth On the use of drogues for measuring subsurface ocean currents , 1981 .

[15]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[16]  Raymond A. de Callafon,et al.  Dynamic Modeling and Pneumatic Switching Control of a Submersible Drogue , 2010, ICINCO.

[17]  Bart De Moor,et al.  Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough , 2007, Autom..

[18]  Martin J. Corless,et al.  State and Input Estimation for a Class of Uncertain Systems , 1998, Autom..

[19]  R. M. Wilson,et al.  Book Reviews: Harold L. Herber, Teaching Reading in Content Areas (Second Edition). Englewood Cliffs, N.J.: Prentice Hall, 1978. , 1979 .

[20]  Stefen Hui,et al.  Sliding-mode observers for systems with unknown inputs: A high-gain approach , 2010, Autom..

[21]  M. Tahk,et al.  Generalized input-estimation technique for tracking maneuvering targets , 1999 .

[22]  Mohamed Darouach,et al.  Extension of minimum variance estimation for systems with unknown inputs , 2003, Autom..

[23]  Jingang Yi,et al.  On stable simultaneous input and state estimation for discrete‐time linear systems , 2011 .

[24]  Mohamed Darouach,et al.  Unbiased minimum variance estimation for systems with unknown exogenous inputs , 1997, Autom..

[25]  Y Delanne,et al.  Road profile input estimation in vehicle dynamics simulation , 2006 .