A Thermoelectrochemical Transfer Function Analysis of Nickel Electrocrystallization in a Nonisothermal Cell

The use of a nonisothermal cell where the working-electrode temperature is monitored and may also be modulated up to several hertz gives access to the measurement of a potentiostatic transfer function (∂I/∂T) E . The analysis of this thermoelectrochemical transfer function (TETF) in the case of Ni electrocrystallization from a Watts solution allows the adsorption step to be isolated and quantified with a far better accuracy than using conventional electrochemical impedance spectroscopy methods. Nevertheless, the electrochemical parameters deduced are quite close to those previously determined in the case of an isothermal cell. This new application of the TETF, thus validated through comparison with results obtained in an isothermal cell, widens its field of expertise.

[1]  J. Amblard,et al.  A Temperature and Electrochemical Impedance Spectroscopy Analysis of Nickel Electrocrystallization from a Watts Solution , 2001 .

[2]  B. Tribollet,et al.  Thermoelectrochemical Transfer Function under Thermal Laminar Free Convection at a Vertical Electrode , 2000 .

[3]  Abel C. Chialvo,et al.  Existence of two sets of kinetic parameters in the correlation of the hydrogen electrode reaction , 2000 .

[4]  A. West,et al.  Flow Modulation as a Means of Studying Leveling Agents , 1998 .

[5]  A. West,et al.  Nickel Deposition in the Presence of Coumarin An Electrochemical Impedance Spectroscopy Study , 1997 .

[6]  B. Tribollet,et al.  Impedance of Laminar Free Convection and Thermal Convection at a Vertical Electrode , 1997 .

[7]  J. Chopart,et al.  Thermoelectrochemical impedance (TEC) —II. Validation for an electrochemical mass transport-controlled system by stationary and dynamic investigations , 1996 .

[8]  B. Tribollet,et al.  A Transfer Function Approach for a Generalized Electrochemical Impedance Spectroscopy , 1994 .

[9]  M. A. Patrick,et al.  Natural convection mass transfer at a horizontal cylinder electrode with an opposed thermal buoyancy effect , 1993 .

[10]  M. Keddam,et al.  Frequency analysis of a temperature perturbation technique in electrochemistry , 1993 .

[11]  E. Walter,et al.  Sur l'identifiabilité structurelle de la réaction de Volmer-Heyrovsky , 1993 .

[12]  J. Chopart,et al.  Thermoelectrochemical impedances—I. A new experimental device to measure thermoelectrical transfer functions , 1992 .

[13]  R. Wiart Elementary steps of electrodeposition analysed by means of impedance spectroscopy , 1990 .

[14]  P. Novák,et al.  Simultaneous mass and heat transfer to a plate electrode in the region of free convection with antiparallel fluxes of mass and heat , 1983 .

[15]  R. Wiart,et al.  Diffusion controlled inhibition of electrodeposition: impedance measurements , 1979 .

[16]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[17]  R. Wiart,et al.  Mechanism of the Electrocrystallization of Nickel and Cobalt in Acidic Solution , 1971 .

[18]  A. Arvia,et al.  Diffusional flow under non-isothermal laminar free convection at a thermal convective electrode☆ , 1968 .