Printed Motes for IoT Wireless Networks: State of the Art, Challenges, and Outlooks

Although wireless sensor networks (WSNs) have been an active field of research for many years, the modules incorporated by WSN nodes have been mainly manufactured utilizing conventional fabrication techniques that are mostly subtractive, requiring significant amounts of materials and increased chemical waste. The new era of the Internet of Things (IoT) will see the fabrication of numerous small form factor devices for wireless sensing for a plurality of applications, including security, health, and environmental monitoring. The large volume of these devices will require new directions in terms of manufacturing cost and energy efficiency, which will be achieved with redesigned, energy-aware modules. This paper presents the state of the art of printed passives, sensors, energy harvesting modules, actives, and communication front ends, and summarizes the challenges of implementing modules that feature low power consumptions without compromising the low fabrication cost. The plethora of the modules presented herein will facilitate the implementation of low cost, additively manufactured, energy-aware IoT nodes that can be fabricated in large volumes with green processes.

[1]  L. Nachman,et al.  PIPENET: A Wireless Sensor Network for Pipeline Monitoring , 2007, 2007 6th International Symposium on Information Processing in Sensor Networks.

[2]  Elfed Lewis,et al.  A comparative review of wireless sensor network mote technologies , 2009, 2009 IEEE Sensors.

[3]  Klaus Finkenzeller,et al.  Rfid Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification , 2003 .

[4]  Jegadesan Subbiah,et al.  Toward Large Scale Roll‐to‐Roll Production of Fully Printed Perovskite Solar Cells , 2015, Advanced materials.

[5]  Juha Virtanen,et al.  Inkjet-Printed Humidity Sensor for Passive UHF RFID Systems , 2011, IEEE Transactions on Instrumentation and Measurement.

[6]  Manos M. Tentzeris,et al.  3D-Printed Origami Packaging With Inkjet-Printed Antennas for RF Harvesting Sensors , 2015, IEEE Transactions on Microwave Theory and Techniques.

[7]  Antonio Iera,et al.  The Internet of Things: A survey , 2010, Comput. Networks.

[8]  Sangkil Kim,et al.  Inkjet-printed RF energy harvesting and wireless power trasmission devices on paper substrate , 2013, 2013 European Microwave Conference.

[9]  Manos M. Tentzeris,et al.  Progress Towards the First Wireless Sensor Networks Consisting of Inkjet-Printed, Paper-Based RFID-Enabled Sensor Tags , 2010, Proceedings of the IEEE.

[10]  Aggelos Bletsas,et al.  Backscatter sensor network for extended ranges and low cost with frequency modulators: Application on wireless humidity sensing , 2013, 2013 IEEE SENSORS.

[11]  J. Fouletier,et al.  Gas analysis with potentiometric sensors. a review , 1982 .

[12]  Wu He,et al.  Internet of Things in Industries: A Survey , 2014, IEEE Transactions on Industrial Informatics.

[13]  Rahul Bhattacharyya,et al.  Towards tag antenna based sensing - An RFID displacement sensor , 2009, 2009 IEEE International Conference on RFID.

[14]  Zhihua Chen,et al.  Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics , 2015, Nature Communications.

[15]  Aggelos Bletsas,et al.  Increased Range Bistatic Scatter Radio , 2014, IEEE Transactions on Communications.

[16]  Wenjing Su,et al.  All-inkjet-printed microfluidics-based encodable flexible chipless RFID sensors , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[17]  A. Goldsmith Communication by Means of Reflected Power , 2022 .

[18]  Zhixian Zhou,et al.  Carbon dioxide gas sensor using a graphene sheet , 2011 .

[19]  Apostolos Georgiadis,et al.  Conformal Hybrid Solar and Electromagnetic (EM) Energy Harvesting Rectenna , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  Wenjing Su,et al.  Additively Manufactured Nanotechnology and Origami-Enabled Flexible Microwave Electronics , 2015, Proceedings of the IEEE.

[21]  Yang Wang,et al.  Sensitivity Modeling of an RFID-Based Strain-Sensing Antenna With Dielectric Constant Change , 2015, IEEE Sensors Journal.

[22]  J. Stetter,et al.  Amperometric gas sensors--a review. , 2008, Chemical reviews.

[23]  Manos M. Tentzeris,et al.  An Inkjet-Printed Microfluidic RFID-Enabled Platform for Wireless Lab-on-Chip Applications , 2013, IEEE Transactions on Microwave Theory and Techniques.

[24]  Manos M. Tentzeris,et al.  Ambient RF Energy Harvesting From a Two-Way Talk Radio for Flexible Wearable Wireless Sensor Devices Utilizing Inkjet Printing Technologies , 2015, IEEE Transactions on Microwave Theory and Techniques.

[25]  Daniel M. Dobkin,et al.  The RF in RFID: Passive UHF RFID in Practice , 2007 .

[26]  Steve Beeby,et al.  SCREEN-PRINTED PIEZOELECTRIC GENERATOR FOR HELICOPTER HEALTH AND USAGE MONITORING SYSTEMS , 2008 .

[27]  J. Jang,et al.  Fabrication of Water‐Dispersible Polyaniline‐Poly(4‐styrenesulfonate) Nanoparticles For Inkjet‐Printed Chemical‐Sensor Applications , 2007 .

[28]  Manos M. Tentzeris,et al.  Pulse shaping for backscatter radio , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[29]  Jinsoo Noh,et al.  Key Issues With Printed Flexible Thin Film Transistors and Their Application in Disposable RF Sensors , 2015, Proceedings of the IEEE.

[30]  Wenjing Su,et al.  Additively Manufactured Microfluidics-Based “Peel-and-Replace” RF Sensors for Wearable Applications , 2016, IEEE Transactions on Microwave Theory and Techniques.

[31]  Vincenzo Fiore,et al.  An Integrated 13.56-MHz RFID Tag in a Printed Organic Complementary TFT Technology on Flexible Substrate , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[32]  Aggelos Bletsas,et al.  A Remotely Programmable Modular Testbed for Backscatter Sensor Network Research , 2013, REALWSN.

[33]  Wei Hong,et al.  A macroscope in the redwoods , 2005, SenSys '05.

[34]  P. H. Lau,et al.  Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. , 2013, Nano letters.

[35]  Taoran Le Nano-material based flexible radio frequency sensors for wearable health and environment monitoring: designs and prototypes utilizing 3d/inkjet printing technologies , 2016 .

[36]  R. A. McGill,et al.  Nerve agent detection using networks of single-walled carbon nanotubes , 2003 .

[37]  John Evans,et al.  Zirconia/alumina functionally graded material made by ceramic ink jet printing , 1999 .

[38]  Manos M. Tentzeris,et al.  Software-defined reader for multi-modal RFID sensing , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[39]  Ryan Bahr,et al.  A fully printed multilayer aperture-coupled patch antenna using hybrid 3D / inkjet additive manufacturing technique , 2015, 2015 European Microwave Conference (EuMC).

[40]  M. M. Tentzeris,et al.  Inkjet-printed Van-Atta reflectarray sensors: A new paradigm for long-range chipless low cost ubiquitous Smart Skin sensors of the Internet of Things , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[41]  S. E. Jo,et al.  Flexible thermoelectric generator for human body heat energy harvesting , 2012 .

[42]  N.C. Karmakar,et al.  Multiresonator-Based Chipless RFID System for Low-Cost Item Tracking , 2009, IEEE Transactions on Microwave Theory and Techniques.

[43]  Robert S. H. Istepanian,et al.  The mobile patient: wireless distributed sensor networks for patient monitoring and care , 2000, Proceedings 2000 IEEE EMBS International Conference on Information Technology Applications in Biomedicine. ITAB-ITIS 2000. Joint Meeting Third IEEE EMBS International Conference on Information Technol.

[44]  Aggelos Bletsas,et al.  Bistatic backscatter radio for tag read-range extension , 2012, 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA).

[45]  Joseph A. Paradiso,et al.  Energy scavenging for mobile and wireless electronics , 2005, IEEE Pervasive Computing.

[46]  Zhiyong Fan,et al.  Palladium/silicon nanowire Schottky barrier-based hydrogen sensors , 2010 .

[47]  Wenjing Su,et al.  Inkjet-printed substrate integrated waveguides (SIW) with “drill-less” vias on paper substrates , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[48]  K. Varahramyan,et al.  A Chipless RFID Sensor System for Cyber Centric Monitoring Applications , 2009, IEEE Transactions on Microwave Theory and Techniques.

[49]  A. Georgiadis,et al.  An Inkjet-Printed Solar-Powered Wireless Beacon on Paper for Identification and Wireless Power Transmission Applications , 2012, IEEE Transactions on Microwave Theory and Techniques.

[50]  L. Roselli,et al.  Inkjet-printed, vertically-integrated, high-performance inductors and transformers on flexible LCP substrate , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[51]  Shahriar Mirabbasi,et al.  Wireless Energy Harvesting for Internet of Things , 2014 .

[52]  Vincent Fusco,et al.  Full duplex reflection amplifier tag , 2013 .

[53]  Manos M. Tentzeris,et al.  Wireless sensing and identification based on radar cross section variability measurement of passive electromagnetic sensors , 2013, Ann. des Télécommunications.

[54]  J. G. Rocha,et al.  Development of inkjet printed strain sensors , 2013 .

[55]  Matt Welsh,et al.  MoteLab: a wireless sensor network testbed , 2005, IPSN '05.

[56]  S.Heinze,et al.  Carbon Nanotubes as Schottky Barrier Transistors , 2002, cond-mat/0207397.

[57]  M. Tentzeris,et al.  Multi-Layer RF Capacitors on Flexible Substrates Utilizing Inkjet Printed Dielectric Polymers , 2013, IEEE Microwave and Wireless Components Letters.

[58]  John Anderson,et al.  Wireless sensor networks for habitat monitoring , 2002, WSNA '02.

[59]  Manos M. Tentzeris,et al.  Inkjet-printed reflection amplifier for increased-range Backscatter radio , 2014, 2014 44th European Microwave Conference.

[60]  A. Lázaro,et al.  Passive Wireless Temperature Sensor Based on Time-Coded UWB Chipless RFID Tags , 2012, IEEE Transactions on Microwave Theory and Techniques.

[61]  Manos M. Tentzeris,et al.  Inkjet-Printed Flexible mm-Wave Van-Atta Reflectarrays: A Solution for Ultralong-Range Dense Multitag and Multisensing Chipless RFID Implementations for IoT Smart Skins , 2016, IEEE Transactions on Microwave Theory and Techniques.

[62]  Manos M. Tentzeris,et al.  Enhancement of RF Tag Backscatter Efficiency With Low-Power Reflection Amplifiers , 2014, IEEE Transactions on Microwave Theory and Techniques.

[63]  Ronn Andriessen,et al.  High efficiency, fully inkjet printed organic solar cells with freedom of design , 2015 .

[64]  C. Kim,et al.  Solution-processed carbon nanotube thin-film complementary static random access memory. , 2015, Nature nanotechnology.

[65]  S. Bauer,et al.  An All‐Printed Ferroelectric Active Matrix Sensor Network Based on Only Five Functional Materials Forming a Touchless Control Interface , 2011, Advanced materials.

[66]  Andrew G. Gillies,et al.  Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. , 2010, Nature materials.

[67]  Yunnan Fang,et al.  UHF lumped element model of a fully-inkjet-printed single-wall-carbon-nanotube-based inter-digitated electrodes breath sensor , 2016, 2016 IEEE International Symposium on Antennas and Propagation (APSURSI).

[68]  Aggelos Bletsas,et al.  Could battery-less scatter radio tags achieve 270-meter range? , 2016, 2016 IEEE Wireless Power Transfer Conference (WPTC).

[69]  Je Hoon Oh,et al.  All-inkjet-printed electrical components and circuit fabrication on a plastic substrate , 2012 .

[70]  Manos M. Tentzeris,et al.  3D/inkjet-printed origami antennas for multi-direction RF harvesting , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[71]  Li Yang,et al.  A Novel Conformal RFID-Enabled Module Utilizing Inkjet-Printed Antennas and Carbon Nanotubes for Gas-Detection Applications , 2009, IEEE Antennas and Wireless Propagation Letters.

[72]  S. Yao,et al.  Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. , 2014, Nanoscale.

[73]  Y. Kawahara,et al.  E-WEHP: A Batteryless Embedded Sensor-Platform Wirelessly Powered From Ambient Digital-TV Signals , 2013, IEEE Transactions on Microwave Theory and Techniques.

[74]  G. Gelinck,et al.  Flexible active-matrix displays and shift registers based on solution-processed organic transistors , 2004, Nature materials.

[75]  Leandro Lorenzelli,et al.  Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review , 2015, IEEE Sensors Journal.

[76]  Stelios A. Choulis,et al.  Printing highly efficient organic solar cells , 2007 .

[77]  Sangkil Kim,et al.  Low-Cost Inkjet-Printed Fully Passive RFID Tags for Calibration-Free Capacitive/Haptic Sensor Applications , 2015, IEEE Sensors Journal.

[78]  Manos M. Tentzeris,et al.  Inkjet-printed 3D interconnects for millimeter-wave system-on-package solutions , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[79]  Manos M. Tentzeris,et al.  Ambient RF Energy-Harvesting Technologies for Self-Sustainable Standalone Wireless Sensor Platforms , 2014, Proceedings of the IEEE.

[80]  Yunnan Fang,et al.  Inkjet-printed, flexible, high performance, carbon nanomaterial based sensors for ammonia and DMMP gas detection , 2015, 2015 European Microwave Conference (EuMC).

[81]  Martin Fischer,et al.  Fully integrated passive UHF RFID transponder IC with 16.7-μW minimum RF input power , 2003, IEEE J. Solid State Circuits.

[82]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[83]  Manos M. Tentzeris,et al.  Pulse Shaping: The Missing Piece of Backscatter Radio and RFID , 2016, IEEE Transactions on Microwave Theory and Techniques.

[84]  Manos M. Tentzeris,et al.  RF tag front-end design for uncompromised communication and harvesting , 2014, 2014 IEEE RFID Technology and Applications Conference (RFID-TA).