Duality on gradient estimates and Wasserstein controls

Abstract We establish a duality between L p -Wasserstein control and L q -gradient estimate in a general framework. Our result extends a known result for a heat flow on a Riemannian manifold. Especially, we can derive a Wasserstein control of a heat flow directly from the corresponding gradient estimate of the heat semigroup without using any other notion of lower curvature bound. By applying our result to a subelliptic heat flow on a Lie group, we obtain a coupling of heat distributions which carries a good control of their relative distance.

[1]  Terry Lyons,et al.  System Control and Rough Paths , 2003 .

[2]  Karl-Theodor Sturm,et al.  Transport inequalities, gradient estimates, entropy and Ricci curvature , 2005 .

[3]  P. Meyer,et al.  Sur les inegalites de Sobolev logarithmiques. I , 1982 .

[4]  Giuseppe Savaré Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds , 2007 .

[5]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces. II , 2006 .

[6]  Anton Thalmaier,et al.  Horizontal Diffusion in C 1 Path Space , 2009, 0904.2762.

[7]  R. McCann,et al.  Ricci flow, entropy and optimal transportation , 2010 .

[8]  T. Melcher,et al.  Hypoelliptic heat kernel inequalities on the Heisenberg group , 2005 .

[9]  Shin-ichi Ohta,et al.  Gradient flows on Wasserstein spaces over compact Alexandrov spaces , 2009 .

[10]  W. Kendall Coupling all the Lévy stochastic areas of multidimensional Brownian motion , 2005, math/0512336.

[11]  C. Villani Topics in Optimal Transportation , 2003 .

[12]  Peter K. Friz,et al.  Multidimensional Stochastic Processes as Rough Paths: Theory and Applications , 2010 .

[13]  Jeff Cheeger,et al.  Differentiability of Lipschitz Functions on Metric Measure Spaces , 1999 .

[14]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[15]  M. Émery,et al.  Hypercontractivité de semi-groupes de diffusion , 1984 .

[16]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[17]  Fabrice Baudoin,et al.  The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds , 2008, 0802.3320.

[18]  Pekka Koskela,et al.  Sobolev met Poincaré , 2000 .

[19]  Djalil CHAFAÏ,et al.  On gradient bounds for the heat kernel on the Heisenberg group , 2007, 0710.3139.

[20]  Alexandre Engulatov,et al.  Functional Inequalities and Hamilton–Jacobi Equations in Geodesic Spaces , 2009, 0906.0476.

[21]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[22]  John Lott,et al.  Hamilton–Jacobi semigroup on length spaces and applications , 2006 .

[23]  R. Montgomery A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .

[24]  R. Strichartz Sub-Riemannian geometry , 1986 .

[25]  Feng-Yu Wang,et al.  On estimation of the logarithmic Sobolev constant and gradient estimates of heat semigroups , 1997 .

[26]  Hong-Quan Li Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg , 2006 .

[27]  Matthias Erbar The heat equation on manifolds as a gradient flow in the Wasserstein space , 2010 .

[28]  T. Melcher Hypoelliptic heat kernel inequalities on Lie groups , 2005, math/0508420.

[29]  Aroldo Kaplan,et al.  Fundamental solutions for a class of hypoelliptic PDE , 1980 .

[30]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[31]  M. Ledoux The geometry of Markov diffusion generators , 1998 .

[32]  Nathaniel Eldredge Precise estimates for the subelliptic heat kernel on H-type groups , 2008, 0810.3218.

[33]  C. Villani Optimal Transport: Old and New , 2008 .

[34]  Laurent Saloff-Coste,et al.  Aspects of Sobolev-type inequalities , 2001 .