Duality on gradient estimates and Wasserstein controls
暂无分享,去创建一个
[1] Terry Lyons,et al. System Control and Rough Paths , 2003 .
[2] Karl-Theodor Sturm,et al. Transport inequalities, gradient estimates, entropy and Ricci curvature , 2005 .
[3] P. Meyer,et al. Sur les inegalites de Sobolev logarithmiques. I , 1982 .
[4] Giuseppe Savaré. Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds , 2007 .
[5] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces. II , 2006 .
[6] Anton Thalmaier,et al. Horizontal Diffusion in C 1 Path Space , 2009, 0904.2762.
[7] R. McCann,et al. Ricci flow, entropy and optimal transportation , 2010 .
[8] T. Melcher,et al. Hypoelliptic heat kernel inequalities on the Heisenberg group , 2005 .
[9] Shin-ichi Ohta,et al. Gradient flows on Wasserstein spaces over compact Alexandrov spaces , 2009 .
[10] W. Kendall. Coupling all the Lévy stochastic areas of multidimensional Brownian motion , 2005, math/0512336.
[11] C. Villani. Topics in Optimal Transportation , 2003 .
[12] Peter K. Friz,et al. Multidimensional Stochastic Processes as Rough Paths: Theory and Applications , 2010 .
[13] Jeff Cheeger,et al. Differentiability of Lipschitz Functions on Metric Measure Spaces , 1999 .
[14] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces , 2006 .
[15] M. Émery,et al. Hypercontractivité de semi-groupes de diffusion , 1984 .
[16] C. Villani,et al. Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.
[17] Fabrice Baudoin,et al. The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds , 2008, 0802.3320.
[18] Pekka Koskela,et al. Sobolev met Poincaré , 2000 .
[19] Djalil CHAFAÏ,et al. On gradient bounds for the heat kernel on the Heisenberg group , 2007, 0710.3139.
[20] Alexandre Engulatov,et al. Functional Inequalities and Hamilton–Jacobi Equations in Geodesic Spaces , 2009, 0906.0476.
[21] D. Burago,et al. A Course in Metric Geometry , 2001 .
[22] John Lott,et al. Hamilton–Jacobi semigroup on length spaces and applications , 2006 .
[23] R. Montgomery. A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .
[24] R. Strichartz. Sub-Riemannian geometry , 1986 .
[25] Feng-Yu Wang,et al. On estimation of the logarithmic Sobolev constant and gradient estimates of heat semigroups , 1997 .
[26] Hong-Quan Li. Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg , 2006 .
[27] Matthias Erbar. The heat equation on manifolds as a gradient flow in the Wasserstein space , 2010 .
[28] T. Melcher. Hypoelliptic heat kernel inequalities on Lie groups , 2005, math/0508420.
[29] Aroldo Kaplan,et al. Fundamental solutions for a class of hypoelliptic PDE , 1980 .
[30] F. Otto. THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .
[31] M. Ledoux. The geometry of Markov diffusion generators , 1998 .
[32] Nathaniel Eldredge. Precise estimates for the subelliptic heat kernel on H-type groups , 2008, 0810.3218.
[33] C. Villani. Optimal Transport: Old and New , 2008 .
[34] Laurent Saloff-Coste,et al. Aspects of Sobolev-type inequalities , 2001 .