Discovering Nonbinary Hierarchical Structures with Bayesian Rose Trees

Book description: This book uses the EM (expectation maximization) algorithm to simultaneously estimate the missing data and unknown parameter(s) associated with a data set. The parameters describe the component distributions of the mixture; the distributions may be continuous or discrete. The editors provide a complete account of the applications, mathematical structure and statistical analysis of finite mixture distributions along with MCMC computational methods, together with a range of detailed discussions covering the applications of the methods and features chapters from the leading experts on the subject. The applications are drawn from scientific discipline, including biostatistics, computer science, ecology and finance. This area of statistics is important to a range of disciplines, and its methodology attracts interest from researchers in the fields in which it can be applied.

[1]  R. Sokal,et al.  A METHOD FOR DEDUCING BRANCHING SEQUENCES IN PHYLOGENY , 1965 .

[2]  W. Fitch,et al.  Construction of phylogenetic trees. , 1967, Science.

[3]  J. Hartigan Direct Clustering of a Data Matrix , 1972 .

[4]  J. Felsenstein Maximum-likelihood estimation of evolutionary trees from continuous characters. , 1973, American journal of human genetics.

[5]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[6]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[7]  Wayne D. Gray,et al.  Basic objects in natural categories , 1976, Cognitive Psychology.

[8]  Fionn Murtagh,et al.  A Survey of Recent Advances in Hierarchical Clustering Algorithms , 1983, Comput. J..

[9]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[10]  Geoffrey J. McLachlan,et al.  Mixture models : inference and applications to clustering , 1989 .

[11]  J. A. Studier,et al.  A note on the neighbor-joining algorithm of Saitou and Nei. , 1988, Molecular biology and evolution.

[12]  J. Hartigan,et al.  Product Partition Models for Change Point Problems , 1992 .

[13]  Ziheng Yang Statistical Properties of the Maximum Likelihood Method of Phylogenetic Estimation and Comparison With Distance Matrix Methods , 1994 .

[14]  K. Strimmer,et al.  Bayesian Probabilities and Quartet Puzzling , 1997 .

[15]  B. Rannala,et al.  Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. , 1997, Molecular biology and evolution.

[16]  J. S. Rogers,et al.  On the consistency of maximum likelihood estimation of phylogenetic trees from nucleotide sequences. , 1997, Systematic biology.

[17]  Richard S. Bird,et al.  Introduction to functional programming using haskeu , 1998 .

[18]  R. Bird Introduction to functional programming using Haskell, Second Edition , 1998 .

[19]  J. Pitman Coalescents with multiple collisions , 1999 .

[20]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[21]  Christopher K. I. Williams A MCMC Approach to Hierarchical Mixture Modelling , 1999, NIPS.

[22]  Shivakumar Vaithyanathan,et al.  Model-Based Hierarchical Clustering , 2000, UAI.

[23]  Daphne Koller,et al.  Probabilistic Abstraction Hierarchies , 2001, NIPS.

[24]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[25]  Carl E. Rasmussen,et al.  Infinite Mixtures of Gaussian Process Experts , 2001, NIPS.

[26]  J. Bertoin Homogeneous fragmentation processes , 2001 .

[27]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Thomas L. Griffiths,et al.  Semi-Supervised Learning with Trees , 2003, NIPS.

[29]  Radford M. Neal,et al.  Density Modeling and Clustering Using Dirichlet Diffusion Trees , 2003 .

[30]  Ken McRae,et al.  Category - Specific semantic deficits , 2008 .

[31]  Simon Osindero,et al.  An Alternative Infinite Mixture Of Gaussian Process Experts , 2005, NIPS.

[32]  Katherine A. Heller,et al.  Bayesian hierarchical clustering , 2005, ICML.

[33]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[34]  Joshua B. Tenenbaum,et al.  Learning annotated hierarchies from relational data , 2006, NIPS.

[35]  Yee Whye Teh,et al.  Bayesian Agglomerative Clustering with Coalescents , 2007, NIPS.

[36]  D. Aldous,et al.  Stochastic models for phylogenetic trees on higher-order taxa , 2007, Journal of mathematical biology.

[37]  Katherine A. Heller,et al.  Efficient Bayesian methods for clustering. , 2008 .

[38]  Yang Xu,et al.  Tree-Based Inference for Dirichlet Process Mixtures , 2009, AISTATS.

[39]  P. Müller,et al.  Random Partition Models with Regression on Covariates. , 2010, Journal of statistical planning and inference.

[40]  Thomas L. Griffiths,et al.  The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies , 2007, JACM.