AN EFFICIENCY STUDY OF POLYNOMIAL EIGENVALUE PROBLEM SOLVERS FOR QUANTUM DOT SIMULATIONS

Nano-scale quantum dot simulations result in large-scale polynomial eigenvalue problems. It remains unclear how these problems can be solved efficiently. We fill this gap in capability partially by proposing a polynomial Jacobi-Davidson method framework, including several varied schemes for solving the associated correction equations. We investigate the performance of the proposed Jacobi-Davidson methods for solving the polynomial eigenvalue problems and several Krylov subspace methods for solving the linear eigenvalue problems with the use of various linear solvers and preconditioning schemes. This study finds the most efficient scheme combinations for different types of target problems.

[1]  Cusack,et al.  Electronic structure of InAs/GaAs self-assembled quantum dots. , 1996, Physical review. B, Condensed matter.

[2]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[3]  Nikolai N. Ledentsov,et al.  Energy relaxation by multiphonon processes in InAs/GaAs quantum dots , 1997 .

[4]  G. Medeiros-Ribeiro,et al.  Charging dynamics of InAs self-assembled quantum dots , 1997 .

[5]  D. DiVincenzo,et al.  Coupled quantum dots as quantum gates , 1998, cond-mat/9808026.

[6]  C. Pryor Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations , 1997, cond-mat/9710304.

[7]  Weichung Wang,et al.  Numerical methods for semiconductor heterostructures with band nonparabolicity , 2003 .

[8]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[9]  Chien-Ping Lee,et al.  Computer simulation of electron energy levels for different shape InAs/GaAs semiconductor quantum dots , 2001 .

[10]  Marco Buongiorno Nardelli,et al.  Finite difference methods for ab initio electronic structure and quantum transport calculations of nanostructures , 2003 .

[11]  P. Harrison,et al.  Calculating modes of quantum wire and dot systems using a finite differencing technique , 2003 .

[12]  Marlis Hochbruck,et al.  A Multilevel Jacobi--Davidson Method for Polynomial PDE Eigenvalue Problems Arising in Plasma Physics , 2010, SIAM J. Sci. Comput..

[13]  Weichung Wang,et al.  A second-order finite volume scheme for three dimensional truncated pyramidal quantum dot , 2006, Comput. Phys. Commun..

[14]  Andrew J. Williamson,et al.  InAs quantum dots: Predicted electronic structure of free-standing versus GaAs-embedded structures , 1999 .

[15]  Weichung Wang,et al.  Numerical schemes for three-dimensional irregular shape quantum dots over curvilinear coordinate systems , 2007, J. Comput. Phys..

[16]  Wen-Wei Lin,et al.  Structure-Preserving Algorithms for Palindromic Quadratic Eigenvalue Problems Arising from Vibration of Fast Trains , 2008, SIAM J. Matrix Anal. Appl..

[17]  Simulation of a quantum-dot flash memory , 1998 .

[18]  T. Hwang,et al.  Efficient numerical schemes for electronic states in coupled quantum dots. , 2008, Journal of Nanoscience and Nanotechnology.

[19]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[20]  F. Bassani,et al.  Spin-orbit splitting of electronic states in semiconductor asymmetric quantum wells , 1997 .

[21]  Weichung Wang,et al.  Energy states of vertically aligned quantum dot array with nonparabolic effective mass , 2005 .

[22]  M. S. Skolnick,et al.  Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers , 1998 .

[23]  P. Petroff,et al.  Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors , 1998 .

[24]  Weichung Wang,et al.  Numerical simulation of three dimensional pyramid quantum dot , 2004 .

[25]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[26]  G. W. Stewart,et al.  Addendum to "A Krylov-Schur Algorithm for Large Eigenproblems" , 2002, SIAM J. Matrix Anal. Appl..

[27]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[28]  Peeters,et al.  Two-electron quantum disks. , 1996, Physical review. B, Condensed matter.

[29]  G. Stewart Matrix Algorithms, Volume II: Eigensystems , 2001 .

[30]  Quantum dot resonant cavity light emitting diode operating near 1300 nm , 1999 .

[31]  E. Chu,et al.  Vibration of fast trains, palindromic eigenvalue problems and structure-preserving doubling algorithms , 2008 .

[32]  G. W. Stewart,et al.  A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..

[33]  Electronic structure of self-assembled quantum dots: comparison between density functional theory and diffusion quantum Monte Carlo , 2000, cond-mat/0003140.

[34]  Gerard L. G. Sleijpen,et al.  A generalized Jacobi-Davidson iteration method for linear eigenvalue problems , 1998 .