AN EFFICIENCY STUDY OF POLYNOMIAL EIGENVALUE PROBLEM SOLVERS FOR QUANTUM DOT SIMULATIONS
暂无分享,去创建一个
[1] Cusack,et al. Electronic structure of InAs/GaAs self-assembled quantum dots. , 1996, Physical review. B, Condensed matter.
[2] Vicente Hernández,et al. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.
[3] Nikolai N. Ledentsov,et al. Energy relaxation by multiphonon processes in InAs/GaAs quantum dots , 1997 .
[4] G. Medeiros-Ribeiro,et al. Charging dynamics of InAs self-assembled quantum dots , 1997 .
[5] D. DiVincenzo,et al. Coupled quantum dots as quantum gates , 1998, cond-mat/9808026.
[6] C. Pryor. Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations , 1997, cond-mat/9710304.
[7] Weichung Wang,et al. Numerical methods for semiconductor heterostructures with band nonparabolicity , 2003 .
[8] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..
[9] Chien-Ping Lee,et al. Computer simulation of electron energy levels for different shape InAs/GaAs semiconductor quantum dots , 2001 .
[10] Marco Buongiorno Nardelli,et al. Finite difference methods for ab initio electronic structure and quantum transport calculations of nanostructures , 2003 .
[11] P. Harrison,et al. Calculating modes of quantum wire and dot systems using a finite differencing technique , 2003 .
[12] Marlis Hochbruck,et al. A Multilevel Jacobi--Davidson Method for Polynomial PDE Eigenvalue Problems Arising in Plasma Physics , 2010, SIAM J. Sci. Comput..
[13] Weichung Wang,et al. A second-order finite volume scheme for three dimensional truncated pyramidal quantum dot , 2006, Comput. Phys. Commun..
[14] Andrew J. Williamson,et al. InAs quantum dots: Predicted electronic structure of free-standing versus GaAs-embedded structures , 1999 .
[15] Weichung Wang,et al. Numerical schemes for three-dimensional irregular shape quantum dots over curvilinear coordinate systems , 2007, J. Comput. Phys..
[16] Wen-Wei Lin,et al. Structure-Preserving Algorithms for Palindromic Quadratic Eigenvalue Problems Arising from Vibration of Fast Trains , 2008, SIAM J. Matrix Anal. Appl..
[17] Simulation of a quantum-dot flash memory , 1998 .
[18] T. Hwang,et al. Efficient numerical schemes for electronic states in coupled quantum dots. , 2008, Journal of Nanoscience and Nanotechnology.
[19] G. W. Stewart,et al. Matrix algorithms , 1998 .
[20] F. Bassani,et al. Spin-orbit splitting of electronic states in semiconductor asymmetric quantum wells , 1997 .
[21] Weichung Wang,et al. Energy states of vertically aligned quantum dot array with nonparabolic effective mass , 2005 .
[22] M. S. Skolnick,et al. Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers , 1998 .
[23] P. Petroff,et al. Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors , 1998 .
[24] Weichung Wang,et al. Numerical simulation of three dimensional pyramid quantum dot , 2004 .
[25] Danny C. Sorensen,et al. Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..
[26] G. W. Stewart,et al. Addendum to "A Krylov-Schur Algorithm for Large Eigenproblems" , 2002, SIAM J. Matrix Anal. Appl..
[27] Chao Yang,et al. ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.
[28] Peeters,et al. Two-electron quantum disks. , 1996, Physical review. B, Condensed matter.
[29] G. Stewart. Matrix Algorithms, Volume II: Eigensystems , 2001 .
[30] Quantum dot resonant cavity light emitting diode operating near 1300 nm , 1999 .
[31] E. Chu,et al. Vibration of fast trains, palindromic eigenvalue problems and structure-preserving doubling algorithms , 2008 .
[32] G. W. Stewart,et al. A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..
[33] Electronic structure of self-assembled quantum dots: comparison between density functional theory and diffusion quantum Monte Carlo , 2000, cond-mat/0003140.
[34] Gerard L. G. Sleijpen,et al. A generalized Jacobi-Davidson iteration method for linear eigenvalue problems , 1998 .