Strained-Si on Si/sub 1-x/Ge/sub x/ MOSFET mobility model

A new electron mobility model for strained-Si MOSFETs has been developed. The mobility increase produced by the strain in the silicon layer is accurately studied and described by means of simple analytical expressions. This model can be easily included in conventional device and circuit simulators. The need of a surface-roughness model dependent on the germanium mole fraction is highlighted. The model fits well experimental measurements.

[1]  J. A. López-Villanueva,et al.  Strained-Si on Si/sub 1-x/Ge/sub x/ MOSFET inversion layer centroid modeling , 2001 .

[2]  D. Antoniadis,et al.  Design of Si/SiGe heterojunction complementary metal-oxide-semiconductor transistors , 1996 .

[3]  J. A. López-Villanueva,et al.  The dependence of the electron mobility on the longitudinal electric field in MOSFETs , 1997 .

[4]  Shinichi Takagi,et al.  On the universality of inversion-layer mobility in n- and p-channel MOSFETs , 1988, Technical Digest., International Electron Devices Meeting.

[5]  K. Rim,et al.  Fabrication and analysis of deep submicron strained-Si n-MOSFET's , 2000 .

[6]  S. Laux,et al.  Monte-Carlo simulation of submicrometer Si n-MOSFETs at 77 and 300 K , 1988, IEEE Electron Device Letters.

[7]  Juan Bautista Roldán,et al.  Coulomb scattering in strained‐silicon inversion layers on Si1−xGex substrates , 1996 .

[8]  M. Fischetti,et al.  On the enhanced electron mobility in strained-silicon inversion layers , 2002 .

[9]  Dimitri A. Antoniadis,et al.  Design of Si/SiGe heterojunction complementary metal-oxide-semiconductor transistors , 1995, Proceedings of International Electron Devices Meeting.

[10]  A comparison of models for phonon scattering in silicon inversion layers , 1995 .

[11]  F. M. Bufler,et al.  Low- and high-field electron-transport parameters for unstrained and strained Si/sub 1-x/Ge/sub x/ , 1997, IEEE Electron Device Letters.

[12]  J. Welser,et al.  Comparative study of phonon‐limited mobility of two‐dimensional electrons in strained and unstrained Si metal–oxide–semiconductor field‐effect transistors , 1996 .

[13]  J. Welser,et al.  Electron mobility enhancement in strained-Si n-type metal-oxide-semiconductor field-effect transistors , 1994, IEEE Electron Device Letters.

[14]  D. Ferry,et al.  Electron transport properties of a strained Si layer on a relaxed Si1-xGex substrate by Monte Carlo simulation , 1993 .

[15]  J. A. López-Villanueva,et al.  A Monte Carlo study on the electron‐transport properties of high‐performance strained‐Si on relaxed Si1−xGex channel MOSFETs , 1996 .

[16]  T. Vogelsang,et al.  Electron transport in strained Si layers on Si1−xGex substrates , 1993 .

[17]  R. Bez,et al.  A physically-based model of the effective mobility in heavily-doped n-MOSFETs , 1998 .

[18]  D. Ferry,et al.  In-plane transport properties of Si/Si/sub 1-x/Ge/sub x/ structure and its FET performance by computer simulation , 1994 .

[19]  J. Welser,et al.  Strain dependence of the performance enhancement in strained-Si n-MOSFETs , 1994, Proceedings of 1994 IEEE International Electron Devices Meeting.

[20]  J. A. López-Villanueva,et al.  Universality of electron mobility curves in MOSFETs: a Monte Carlo study , 1995 .