Time varying radial basis functions
暂无分享,去创建一个
Ioannis G. Kevrekidis | C. W. Gear | C. William Gear | A. A. Jamshidi | I. Kevrekidis | A. Jamshidi | C. Gear
[1] M. A. Henson,et al. Receding horizon control and discontinuous state feedback stabilization , 1995 .
[2] Philipp Slusallek,et al. Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.
[3] David S. Broomhead,et al. Geometric Manifold Learning , 2011, IEEE Signal Processing Magazine.
[4] C. C. Homes,et al. Bayesian Radial Basis Functions of Variable Dimension , 1998, Neural Computation.
[5] Robert L. Pego,et al. Solitary waves on FPU lattices: II. Linear implies nonlinear stability , 2002 .
[6] Paramasivan Saratchandran,et al. Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm , 1998, IEEE Trans. Neural Networks.
[7] Jooyoung Park,et al. Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.
[8] M. J. D. Powell,et al. Radial basis functions for multivariable interpolation: a review , 1987 .
[9] P. Werbos,et al. Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .
[10] David Lowe,et al. Practical methods of tracking of nonstationary time series applied to real-world data , 1996, Defense + Commercial Sensing.
[11] Arta A. Jamshidi,et al. Towards a Black Box Algorithm for Nonlinear Function Approximation over High-Dimensional Domains , 2007, SIAM J. Sci. Comput..
[12] Nicolaos B. Karayiannis,et al. Growing radial basis neural networks: merging supervised and unsupervised learning with network growth techniques , 1997, IEEE Trans. Neural Networks.
[13] Ioannis G. Kevrekidis,et al. Projective Methods for Stiff Differential Equations: Problems with Gaps in Their Eigenvalue Spectrum , 2002, SIAM J. Sci. Comput..
[14] H. B. Keller,et al. NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .
[15] I. Jolliffe. Principal Component Analysis , 2002 .
[16] Holger Wendland,et al. Scattered Data Approximation: Conditionally positive definite functions , 2004 .
[17] Arta A. Jamshidi,et al. Skew-Radial Basis Function Expansions for Empirical Modeling , 2009, SIAM J. Sci. Comput..
[18] Arta A. Jamshidi,et al. Modeling Multivariate Time Series on Manifolds with Skew Radial Basis Functions , 2011, Neural Computation.
[19] John C. Platt. A Resource-Allocating Network for Function Interpolation , 1991, Neural Computation.
[20] Jooyoung Park,et al. Approximation and Radial-Basis-Function Networks , 1993, Neural Computation.
[21] Andreas G. Boudouvis,et al. Projective and coarse projective integration for problems with continuous symmetries , 2007, J. Comput. Phys..
[22] P. Holmes,et al. Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .
[23] R. L. Hardy. Multiquadric equations of topography and other irregular surfaces , 1971 .
[24] James L. McClelland,et al. Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .
[25] Simon Haykin,et al. Regularized radial basis functional networks: theory and applications , 2001 .
[26] R. Schaback,et al. Characterization and construction of radial basis functions , 2001 .
[27] Björn Sandstede,et al. Stability of multiple-pulse solutions , 1998 .
[28] Martin D. Buhmann,et al. Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.
[29] Dmitry E. Pelinovsky,et al. Translationally invariant nonlinear Schrödinger lattices , 2006, nlin/0603022.
[30] Lloyd N. Trefethen,et al. Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..
[31] I. Kevrekidis,et al. "Coarse" stability and bifurcation analysis using time-steppers: a reaction-diffusion example. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[32] C. W. Gear,et al. 'Coarse' integration/bifurcation analysis via microscopic simulators: Micro-Galerkin methods , 2002 .
[33] M. Ablowitz,et al. On the solitary wave pulse in a chain of beads , 2005 .
[34] Robert L. Pego,et al. Solitary waves on FPU lattices: I. Qualitative properties, renormalization and continuum limit , 1999 .
[35] C. W. Gear,et al. Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .
[36] Donato Posa,et al. Space-time radial basis functions , 2002 .
[37] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[38] R. N. Desmarais,et al. Interpolation using surface splines. , 1972 .
[39] I. Kevrekidis,et al. Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .
[40] D. Broomhead,et al. Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .