Time varying radial basis functions

We introduce radial basis functions (RBFs) whose time-varying coefficients determine not only the amplitude and position of each RBF but also their shape. The intended use of these Time Varying-RBFs (TV-RBFs) is in the local-in-time representation of low-dimensional approximations of functions that arise in solving spatiotemporal evolution problems; in particular, for time-varying spatially localized solutions with a temporal translation component such as traveling waves, modulated pulses or soliton-like solutions of evolutionary differential equations. This paper is restricted to the one-dimensional spatial case. We also present an algorithm that places the Time Varying-RBFs (TV-RBFs) over spatiotemporal data that may come from experiments, from finely discretized PDE simulations, or even from multiscale, particle-based simulations. It first approximates the function at a single time instant (a temporal snapshot) as a sum of RBFs using a novel weighted minimization that causes each RBF to primarily approximate one of the localized parts of the function). It then extends that approximation to TV-RBFs over a sequence of snapshots of the function at different times. We conclude by discussing the potential uses of these TV-RBFs.

[1]  M. A. Henson,et al.  Receding horizon control and discontinuous state feedback stabilization , 1995 .

[2]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[3]  David S. Broomhead,et al.  Geometric Manifold Learning , 2011, IEEE Signal Processing Magazine.

[4]  C. C. Homes,et al.  Bayesian Radial Basis Functions of Variable Dimension , 1998, Neural Computation.

[5]  Robert L. Pego,et al.  Solitary waves on FPU lattices: II. Linear implies nonlinear stability , 2002 .

[6]  Paramasivan Saratchandran,et al.  Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm , 1998, IEEE Trans. Neural Networks.

[7]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[8]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[9]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[10]  David Lowe,et al.  Practical methods of tracking of nonstationary time series applied to real-world data , 1996, Defense + Commercial Sensing.

[11]  Arta A. Jamshidi,et al.  Towards a Black Box Algorithm for Nonlinear Function Approximation over High-Dimensional Domains , 2007, SIAM J. Sci. Comput..

[12]  Nicolaos B. Karayiannis,et al.  Growing radial basis neural networks: merging supervised and unsupervised learning with network growth techniques , 1997, IEEE Trans. Neural Networks.

[13]  Ioannis G. Kevrekidis,et al.  Projective Methods for Stiff Differential Equations: Problems with Gaps in Their Eigenvalue Spectrum , 2002, SIAM J. Sci. Comput..

[14]  H. B. Keller,et al.  NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .

[15]  I. Jolliffe Principal Component Analysis , 2002 .

[16]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[17]  Arta A. Jamshidi,et al.  Skew-Radial Basis Function Expansions for Empirical Modeling , 2009, SIAM J. Sci. Comput..

[18]  Arta A. Jamshidi,et al.  Modeling Multivariate Time Series on Manifolds with Skew Radial Basis Functions , 2011, Neural Computation.

[19]  John C. Platt A Resource-Allocating Network for Function Interpolation , 1991, Neural Computation.

[20]  Jooyoung Park,et al.  Approximation and Radial-Basis-Function Networks , 1993, Neural Computation.

[21]  Andreas G. Boudouvis,et al.  Projective and coarse projective integration for problems with continuous symmetries , 2007, J. Comput. Phys..

[22]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[23]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[24]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[25]  Simon Haykin,et al.  Regularized radial basis functional networks: theory and applications , 2001 .

[26]  R. Schaback,et al.  Characterization and construction of radial basis functions , 2001 .

[27]  Björn Sandstede,et al.  Stability of multiple-pulse solutions , 1998 .

[28]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[29]  Dmitry E. Pelinovsky,et al.  Translationally invariant nonlinear Schrödinger lattices , 2006, nlin/0603022.

[30]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[31]  I. Kevrekidis,et al.  "Coarse" stability and bifurcation analysis using time-steppers: a reaction-diffusion example. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[32]  C. W. Gear,et al.  'Coarse' integration/bifurcation analysis via microscopic simulators: Micro-Galerkin methods , 2002 .

[33]  M. Ablowitz,et al.  On the solitary wave pulse in a chain of beads , 2005 .

[34]  Robert L. Pego,et al.  Solitary waves on FPU lattices: I. Qualitative properties, renormalization and continuum limit , 1999 .

[35]  C. W. Gear,et al.  Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .

[36]  Donato Posa,et al.  Space-time radial basis functions , 2002 .

[37]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[38]  R. N. Desmarais,et al.  Interpolation using surface splines. , 1972 .

[39]  I. Kevrekidis,et al.  Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .

[40]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .