An atomic interaction-based continuum model for adhesive contact mechanics

A micro/nano-scale computational contact mechanics model is proposed to study the adhesive contact between deformable bodies. To model adhesive contact, an interatomic interaction potential is incorporated into the framework of nonlinear continuum mechanics. The ensuing contact model is cast into an efficient finite element formulation which is implemented using an updated Lagrangian approach. The scaling of the model with respect to its geometrical size and the strength of adhesion is investigated. The proposed computational contact model is validated by a comparison with the analytical JKR and Maugis-Dugdale models.

[1]  K. Bathe,et al.  Stability and patch test performance of contact discretizations and a new solution algorithm , 2001 .

[2]  R. Full,et al.  Adhesive force of a single gecko foot-hair , 2000, Nature.

[3]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[4]  YP Zhao,et al.  Effect of Work of Adhesion on Nanoindentation , 2003 .

[5]  Johnson,et al.  An Adhesion Map for the Contact of Elastic Spheres , 1997, Journal of colloid and interface science.

[6]  G. Dietler,et al.  Force-distance curves by atomic force microscopy , 1999 .

[7]  T. Laursen Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis , 2002 .

[8]  R. Full,et al.  Evidence for van der Waals adhesion in gecko setae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Klaus-Jürgen Bathe,et al.  The inf–sup condition and its evaluation for mixed finite element methods , 2001 .

[10]  Ted Belytschko,et al.  Probabilistic finite elements for transient analysis in nonlinear continua , 1985 .

[11]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[12]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[13]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[14]  J. Tinsley Oden,et al.  Computational methods in nonlinear mechanics , 1980 .

[15]  D. Maugis Adhesion of spheres : the JKR-DMT transition using a dugdale model , 1992 .

[16]  Jean Paul Thiery,et al.  Johnson-Kendall-Roberts theory applied to living cells. , 2005, Physical review letters.

[17]  K. Bathe Finite Element Procedures , 1995 .

[18]  M. A. Crisfield,et al.  Re‐visiting the contact patch test , 2000 .

[19]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[20]  Roger A. Sauer,et al.  An atomic interaction‐based continuum model for computational multiscale contact mechanics , 2007 .

[21]  Roger A. Sauer,et al.  A contact mechanics model for quasi‐continua , 2007 .

[22]  Sung-San Cho,et al.  Finite element modeling of adhesive contact using molecular potential , 2004 .

[23]  R. S. Bradley,et al.  LXXIX. The cohesive force between solid surfaces and the surface energy of solids , 1932 .

[24]  Ki Myung Lee,et al.  Crystallite coalescence during film growth based on improved contact mechanics adhesion models , 2004 .

[25]  Ted Belytschko,et al.  Finite element methods for the non‐linear mechanics of crystalline sheets and nanotubes , 2004 .

[26]  Dong Qian,et al.  Effect of interlayer potential on mechanical deformation of multiwalled carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.

[27]  J. Barbera,et al.  Contact mechanics , 1999 .

[28]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[29]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[30]  H. Saunders Book Reviews : NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS K.-J. Bathe and E.L. Wilson Prentice-Hall, Inc, Englewood Cliffs, NJ , 1978 .

[31]  H. C. Hamaker The London—van der Waals attraction between spherical particles , 1937 .

[32]  Mark A. Lantz,et al.  Simultaneous force and conduction measurements in atomic force microscopy , 1997 .

[33]  J. Israelachvili Intermolecular and surface forces , 1985 .

[34]  Tongxi Yu,et al.  Mechanics of adhesion in MEMS—a review , 2003 .

[35]  P. C. Dunne Finite elements, procedures in engineering analysis , 1982 .

[36]  J. A. Greenwood,et al.  Adhesion of elastic spheres , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.