An atomic interaction-based continuum model for adhesive contact mechanics
暂无分享,去创建一个
[1] K. Bathe,et al. Stability and patch test performance of contact discretizations and a new solution algorithm , 2001 .
[2] R. Full,et al. Adhesive force of a single gecko foot-hair , 2000, Nature.
[3] Ronald E. Miller,et al. The Quasicontinuum Method: Overview, applications and current directions , 2002 .
[4] YP Zhao,et al. Effect of Work of Adhesion on Nanoindentation , 2003 .
[5] Johnson,et al. An Adhesion Map for the Contact of Elastic Spheres , 1997, Journal of colloid and interface science.
[6] G. Dietler,et al. Force-distance curves by atomic force microscopy , 1999 .
[7] T. Laursen. Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis , 2002 .
[8] R. Full,et al. Evidence for van der Waals adhesion in gecko setae , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[9] Klaus-Jürgen Bathe,et al. The inf–sup condition and its evaluation for mixed finite element methods , 2001 .
[10] Ted Belytschko,et al. Probabilistic finite elements for transient analysis in nonlinear continua , 1985 .
[11] B. V. Derjaguin,et al. Effect of contact deformations on the adhesion of particles , 1975 .
[12] S. Timoshenko,et al. Theory of elasticity , 1975 .
[13] Peter Wriggers,et al. Computational Contact Mechanics , 2002 .
[14] J. Tinsley Oden,et al. Computational methods in nonlinear mechanics , 1980 .
[15] D. Maugis. Adhesion of spheres : the JKR-DMT transition using a dugdale model , 1992 .
[16] Jean Paul Thiery,et al. Johnson-Kendall-Roberts theory applied to living cells. , 2005, Physical review letters.
[17] K. Bathe. Finite Element Procedures , 1995 .
[18] M. A. Crisfield,et al. Re‐visiting the contact patch test , 2000 .
[19] R. Ogden. Non-Linear Elastic Deformations , 1984 .
[20] Roger A. Sauer,et al. An atomic interaction‐based continuum model for computational multiscale contact mechanics , 2007 .
[21] Roger A. Sauer,et al. A contact mechanics model for quasi‐continua , 2007 .
[22] Sung-San Cho,et al. Finite element modeling of adhesive contact using molecular potential , 2004 .
[23] R. S. Bradley,et al. LXXIX. The cohesive force between solid surfaces and the surface energy of solids , 1932 .
[24] Ki Myung Lee,et al. Crystallite coalescence during film growth based on improved contact mechanics adhesion models , 2004 .
[25] Ted Belytschko,et al. Finite element methods for the non‐linear mechanics of crystalline sheets and nanotubes , 2004 .
[26] Dong Qian,et al. Effect of interlayer potential on mechanical deformation of multiwalled carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.
[27] J. Barbera,et al. Contact mechanics , 1999 .
[28] K. Kendall,et al. Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[29] Wing Kam Liu,et al. Nonlinear Finite Elements for Continua and Structures , 2000 .
[30] H. Saunders. Book Reviews : NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS K.-J. Bathe and E.L. Wilson Prentice-Hall, Inc, Englewood Cliffs, NJ , 1978 .
[31] H. C. Hamaker. The London—van der Waals attraction between spherical particles , 1937 .
[32] Mark A. Lantz,et al. Simultaneous force and conduction measurements in atomic force microscopy , 1997 .
[33] J. Israelachvili. Intermolecular and surface forces , 1985 .
[34] Tongxi Yu,et al. Mechanics of adhesion in MEMS—a review , 2003 .
[35] P. C. Dunne. Finite elements, procedures in engineering analysis , 1982 .
[36] J. A. Greenwood,et al. Adhesion of elastic spheres , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.