Decoding q-ary lattices in the Lee metric

Q-ary lattices can be obtained from q-ary codes using the so-called Construction A. We investigate these lattices in the Lee metric and show how their decoding process can be related to the associated codes. For prime q we derive a Lee sphere decoding algorithm for q-ary lattices, present a brief discussion on its complexity and some comparisons with the classic sphere decoding.

[1]  Emanuele Viterbo,et al.  A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.

[2]  Alexander Vardy,et al.  Closest point search in lattices , 2002, IEEE Trans. Inf. Theory.

[3]  U. Fincke,et al.  Improved methods for calculating vectors of short length in a lattice , 1985 .

[4]  Babak Hassibi,et al.  On the sphere-decoding algorithm I. Expected complexity , 2005, IEEE Transactions on Signal Processing.

[5]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[6]  Ian F. Blake,et al.  Trellis Complexity and Minimal Trellis Diagrams of Lattices , 1998, IEEE Trans. Inf. Theory.

[7]  Lorenzo Milazzo,et al.  Enumerating and decoding perfect linear Lee codes , 2009, Des. Codes Cryptogr..

[8]  R. Palazzo,et al.  Alternant and BCH codes over certain rings , 2003 .

[9]  Shafi Goldwasser,et al.  Complexity of lattice problems , 2002 .

[10]  Peter Horák,et al.  Fast decoding of quasi-perfect Lee distance codes , 2006, Des. Codes Cryptogr..

[11]  N. J. A. Sloane,et al.  An improvement to the Minkowski-Hiawka bound for packing superballs , 1987 .

[12]  A. K. Lenstra,et al.  Factoring polynomials with rational coefficients , 1982 .

[13]  Oded Regev,et al.  Lattice-Based Cryptography , 2006, CRYPTO.

[14]  Paul H. Siegel,et al.  Lee-metric BCH codes and their application to constrained and partial-response channels , 1994, IEEE Trans. Inf. Theory.

[15]  Eitan Yaakobi,et al.  Dense error-correcting codes in the Lee metric , 2010, 2010 IEEE Information Theory Workshop.

[16]  S. Golomb,et al.  Perfect Codes in the Lee Metric and the Packing of Polyominoes , 1970 .

[17]  Shlomo Shamai,et al.  Mutual information and minimum mean-square error in Gaussian channels , 2004, IEEE Transactions on Information Theory.

[18]  C. Y. Lee,et al.  Some properties of nonbinary error-correcting codes , 1958, IRE Trans. Inf. Theory.

[19]  Claus-Peter Schnorr,et al.  Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems , 1991, FCT.

[20]  Shlomo Shamai,et al.  Additive non-Gaussian noise channels: mutual information and conditional mean estimation , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[21]  Eitan Yaakobi,et al.  Error-Correction of Multidimensional Bursts , 2007, ISIT.

[22]  E. Biglieri,et al.  A universal decoding algorithm for lattice codes , 1993 .

[23]  Shafi Goldwasser,et al.  Complexity of lattice problems - a cryptographic perspective , 2002, The Kluwer international series in engineering and computer science.