5-axis flank milling: A state-of-the-art review

Flank milling is of importance to machining aircraft structural parts, turbines, blades and several other mechanical parts. It decreases manufacturing time, enhances quality and reduces cost. Since flank milling developable ruled surfaces do not contain geometrical errors, research on flank milling focuses on the generation of optimal tool trajectory for non-developable ruled surfaces, even generic free-form surfaces. This includes: envelope surfaces, geometrical errors (overcut, undercut), energy optimization in tool movement, surface deviations, tool geometry adaptation, tool wear and temperature, and surface roughness. In this article we present a survey on flank milling as well as suggesting guidelines for future considerations in solving flank milling tool trajectory optimization.

[1]  Yusuf Altintas,et al.  Simulation of flank milling processes , 2005 .

[2]  Erik L.J. Bohez,et al.  Five-axis milling machine tool kinematic chain design and analysis , 2002 .

[3]  E. Eleftheriou,et al.  Analysis of the Mechanics of Machining with Tapered End Milling Cutters , 1994 .

[4]  Yusuf Altintas,et al.  Virtual Five-Axis Flank Milling of Jet Engine Impellers—Part II: Feed Rate Optimization of Five-Axis Flank Milling , 2008 .

[5]  Han Ding,et al.  Tool path optimisation for flank milling ruled surface based on the distance function , 2010 .

[6]  John C. J. Chiou,et al.  Accurate tool position for five-axis ruled surface machining by swept envelope approach , 2004, Comput. Aided Des..

[7]  Gregory C Loney,et al.  NC machining of free form surfaces , 1987 .

[8]  Johanna Senatore,et al.  Analysis of improved positioning in five-axis ruled surface milling using envelope surface , 2005, Comput. Aided Des..

[9]  Chih-Hsing Chu,et al.  Tool-path verification in five-axis machining of sculptured surfaces , 1997 .

[10]  Sanjeev Bedi,et al.  Surface swept by a toroidal cutter during 5-axis machining , 2001, Comput. Aided Des..

[11]  Sanjeev Bedi,et al.  Flank milling with flat end milling cutters , 2003, Comput. Aided Des..

[12]  Ju-Hyun Jeon,et al.  Optical flank wear monitoring of cutting tools by image processing , 1988 .

[13]  Sanjeev Bedi,et al.  Triple tangent flank milling of ruled surfaces , 2004, Comput. Aided Des..

[14]  Pierre Bourdet,et al.  A New Concept for the Design and the Manufacturing of Free-Form Surfaces: The Machining Surface , 1999 .

[15]  Derek Yip-Hoi,et al.  Cutter-Workpiece Engagement Calculations by Parallel Slicing for Five-Axis Flank Milling of Jet Engine Impellers , 2008 .

[16]  F. Ismail,et al.  Chatter suppression in five-axis machining of flexible parts , 2002 .

[17]  I. Yellowley,et al.  The influence of thermal cycling on tool life in peripheral milling , 1976 .

[18]  Fritz Rehsteiner,et al.  Collision-Free Five-Axis Milling of Twisted Ruled Surfaces , 1993 .

[19]  Yuan-Shin Lee,et al.  Locally optimal cutting positions for 5-axis sculptured surface machining , 2003, Comput. Aided Des..

[20]  Chung Y. Wu,et al.  Arbitrary Surface Flank Milling and Flank SAM in the Design and Manufacturing of Jet Engine Fan and Compressor Airfoils , 2012 .

[21]  Chuang-Jang Chiou,et al.  A machining potential field approach to tool path generation for multi-axis sculptured surface machining , 2002, Comput. Aided Des..

[22]  Frederic Monies,et al.  Improved positioning of a conical mill for machining ruled surfaces: Application to turbine blades , 2000 .

[23]  Yusuf Altintas,et al.  Virtual Five-Axis Flank Milling of Jet Engine Impellers—Part I: Mechanics of Five-Axis Flank Milling , 2008 .

[24]  Der Min Tsay,et al.  A Study on Five Flank Machining of Centrifugal Compressor Impellers , 2002 .

[25]  Santanu Das,et al.  3D tool wear measurement and visualisation using stereo imaging , 1997 .

[26]  Pierre Bourdet,et al.  Avoiding 5-axis singularities using tool path deformation , 2004 .

[27]  B. Ravani,et al.  Cylindrical milling of ruled surfaces , 2008 .

[28]  L. N. López de Lacalle,et al.  The Denavit and Hartenberg approach applied to evaluate the consequences in the tool tip position of geometrical errors in five-axis milling centres , 2008 .

[29]  Xiong-Wei Liu,et al.  Five-axis NC cylindrical milling of sculptured surfaces , 1995, Comput. Aided Des..

[30]  C. Y. Wu,et al.  Arbitrary Surface Flank Milling of Fan, Compressor, and Impeller Blades , 1994 .

[31]  Takahiro Watanabe,et al.  Generation of 5-Axis Control Collision-Free Tool Path and Postprocessing for NC Data , 1992 .

[32]  Han Ding,et al.  Analytical Expression of the Swept Surface of a Rotary Cutter Using the Envelope Theory of Sphere Congruence , 2009 .

[33]  Ming C. Leu,et al.  The sweep-envelope differential equation algorithm and its application to NC machining verification , 1997, Comput. Aided Des..

[34]  A. Galip Ulsoy,et al.  On-Line Flank Wear Estimation Using an Adaptive Observer and Computer Vision, Part 1: Theory , 1993 .

[35]  Moshe Shpitalni,et al.  Realtime curve interpolators , 1994, Comput. Aided Des..

[36]  Ruxu Du,et al.  Modelling Machining Dynamics Including Damping in the Tool-Workpiece Interface , 1994 .

[37]  Han Ding,et al.  Global optimization of tool path for five-axis flank milling with a cylindrical cutter , 2009 .

[38]  Jeffrey G. Hemmett,et al.  Modeling of cutting geometry and forces for 5-axis sculptured surface machining , 2003, Comput. Aided Des..

[39]  I. Ali,et al.  Advanced Interpolation Techniques for N.C. Machines , 1993 .

[40]  Johanna Senatore,et al.  Analytical estimation of error in flank milling of ruled surfaces , 2008, Comput. Aided Des..

[41]  Allan D. Spence,et al.  On the dynamics of ball end milling: modeling of cutting forces and stability analysis , 1998 .

[42]  Gershon Elber,et al.  5-Axis Freeform Surface Milling Using Piecewise Ruled Surface Approximation , 1997 .

[43]  Walter Rubio,et al.  Side milling of ruled surfaces: Optimum positioning of the milling cutter and calculation of interference , 1998 .

[44]  Inyong Ham,et al.  Analysis of Tool Wear—Part I: Theoretical Models of Flank Wear , 1969 .

[45]  Yoram Koren,et al.  Five-axis surface interpolators , 1995 .

[46]  Sanjeev Bedi,et al.  Error measurements for flank milling , 2005, Comput. Aided Des..

[47]  Jean-Yves Hascoët,et al.  An enhanced machining simulator with tool deflection error analysis , 2002 .

[48]  Xavier Beudaert,et al.  5-axis Tool Path Smoothing Based on Drive Constraints , 2011 .

[49]  Fuhua Cheng,et al.  Energy and B-spline interproximation , 1997, Comput. Aided Des..

[50]  Yusuf Altintas,et al.  High speed CNC system design. Part I: jerk limited trajectory generation and quintic spline interpolation , 2001 .

[51]  Pierre-Yves Pechard,et al.  Geometrical deviations versus smoothness in 5-axis high-speed flank milling , 2009 .

[52]  Yuan-Shin Lee,et al.  Swept surface determination for five-axis numerical control machining , 2002 .

[53]  Gérard Poulachon,et al.  New approach to 5-axis flank milling of free-form surfaces: Computation of adapted tool shape , 2009, Comput. Aided Des..

[54]  Erik L.J. Bohez,et al.  Compensating for systematic errors in 5-axis NC machining , 2002, Comput. Aided Des..

[55]  Jian Liu,et al.  Second order approximation of tool envelope surface for 5-axis machining with single point contact , 2008, Comput. Aided Des..

[56]  Stéphane Segonds,et al.  Tool positioning error (TPE) characterisation in milling , 2004 .

[57]  Chih-Hsing Chu,et al.  Optimized tool path generation based on dynamic programming for five-axis flank milling of rule surface , 2008 .

[58]  Klaus Weinert,et al.  Swept volume generation for the simulation of machining processes , 2004 .

[59]  Seok Won Lee,et al.  Complete swept volume generation, Part I: Swept volume of a piecewise C1-continuous cutter at five-axis milling via Gauss map , 2011, Comput. Aided Des..

[60]  Der Min Tsay,et al.  A Study on Five-Axis Flank Machining of Centrifugal Compressor Impellers , 2000 .

[61]  Suk-Hwan Suh,et al.  Avoiding tool interference in four-axis NC machining of rotationally free surfaces , 1992, IEEE Trans. Robotics Autom..

[62]  Jian Liu,et al.  Improved positioning of cylindrical cutter for flank milling ruled surfaces , 2005, Comput. Aided Des..

[63]  Yuan-Shin Lee,et al.  Admissible tool orientation control of gouging avoidance for 5-axis complex surface machining , 1997, Comput. Aided Des..

[64]  Ning Wang,et al.  5-axis Flank Milling Free-form Surfaces Considering Constraints , 2011, Comput. Aided Des..

[65]  Sanjeev Bedi,et al.  Mechanistic modelling of the milling process using an adaptive depth buffer , 2003, Comput. Aided Des..

[66]  Chih-Hsing Chu,et al.  Tool path planning for five-axis flank milling with developable surface approximation , 2006 .

[67]  Christophe Tournier,et al.  Kinematical performance prediction in multi-axis machining for process planning optimization , 2008 .

[68]  Jui-Jen Chou,et al.  Command Generation for Three-Axis CNC Machining , 1991 .

[69]  Johanna Senatore,et al.  Improved positioning for side milling of ruled surfaces: Analysis of the rotation axis's influence on machining error , 2007 .

[70]  Bernard Anselmetti,et al.  Deviation of a machined surface in flank milling , 2003 .

[71]  Jae-Hee Kim,et al.  Development of a trajectory generation method for a five-axis NC machine , 2001 .

[72]  J. Tlusty,et al.  Basic Non-Linearity in Machining Chatter , 1981 .

[73]  Claire Lartigue,et al.  Tool path deformation in 5-axis flank milling using envelope surface , 2003, Comput. Aided Des..

[74]  A. Galip Ulsoy,et al.  On-Line Flank Wear Estimation Using an Adaptive Observer and Computer Vision, Part 2: Experiment , 1993 .

[75]  Der Min Tsay,et al.  Accurate 5-Axis Machining of Twisted Ruled Surfaces , 2001 .

[76]  Ruxu Du,et al.  Generation of Milled Surfaces Including Tool Dynamics and Wear , 1993 .

[77]  Walter Rubio,et al.  Comparative study of interference caused by different position settings of a conical milling cutter on a ruled surface , 2001 .

[78]  Walter Rubio,et al.  Five-axis NC milling of ruled surfaces: Optimal geometry of a conical tool , 2002 .

[79]  Johannes Wallner,et al.  Approximation algorithms for developable surfaces , 1999, Comput. Aided Geom. Des..

[80]  Yean-Ren Hwang,et al.  Five-axis tool orientation smoothing using quaternion interpolation algorithm , 2003 .

[81]  Ming C. Leu,et al.  A Verification Program for 5-Axis NC Machining with General APT Tools , 1997 .

[82]  Ian T. Chappel The use of vectors to simulate material removed by numerically controlled milling , 1983 .

[83]  J. W. Park,et al.  Cutter-location data optimization in 5-axis surface machining , 1993, Comput. Aided Des..

[84]  Hans Kurt Tönshoff,et al.  Flank milling optimization - the flamingo project , 2001 .

[85]  Claire Lartigue,et al.  Characterization of 3D surface topography in 5-axis milling , 2011, ArXiv.

[86]  Helmut Pottmann,et al.  On the computational geometry of ruled surfaces , 1999, Comput. Aided Des..

[87]  H. Pottmann,et al.  Approximation by ruled surfaces , 1999 .

[88]  Ning Wang,et al.  Analytical calculation of the envelope surface for generic milling tools directly from CL-data based on the moving frame method , 2009, Comput. Aided Des..

[89]  Yuan-Shin Lee,et al.  Non-isoparametric tool path planning by machining strip evaluation for 5-axis sculptured surface machining , 1998, Comput. Aided Des..

[90]  Robert B. Jerard,et al.  5-axis Machining of Sculptured Surfaces with a Flat-end Cutter , 1994, Comput. Aided Des..

[91]  E. Bohez,et al.  Adaptive nonlinear tool path optimization for five-axis machining , 2000 .

[92]  Pierre Bourdet,et al.  A new format for 5-axis tool path computation, using Bspline curves , 2004, Comput. Aided Des..

[93]  Rong-Shine Lin,et al.  Ruled Surface Machining on Five-Axis CNC Machine Tools , 2000 .

[94]  G. W. Vickers,et al.  Ball-Mills Versus End-Mills for Curved Surface Machining , 1989 .

[95]  Pascal Ray,et al.  The Domain of Admissible Orientation concept: A new method for five-axis tool path optimisation , 2008, Comput. Aided Des..

[96]  Han Ding,et al.  Global optimization of tool path for five-axis flank milling with a cylindrical cutter , 2009, Comput. Aided Des..

[97]  G Zheng,et al.  Smooth tool path generation for five-axis flank milling using multi-objective programming , 2012 .

[98]  Radha Sarma,et al.  On local gouging in five-axis sculptured surface machining using flat-end tools , 2000, Comput. Aided Des..

[99]  Ning Wang,et al.  Optimize tool paths of flank milling with generic cutters based on approximation using the tool envelope surface , 2009, Comput. Aided Des..

[100]  Elisabetta Ceretti,et al.  A Neural Network Architecture for Tool Wear Detection through Digital Camera Observations , 1996 .

[101]  Joost Duflou,et al.  A geometric modeling and five-axis machining algorithm for centrifugal impellers , 1997 .

[102]  Yuan-Shin Lee,et al.  A shape-generating approach for multi-axis machining G-buffer models , 1999, Comput. Aided Des..

[103]  Karim Abdel-Malek,et al.  Geometric representation of the swept volume using Jacobian rank-deficiency conditions , 1997, Comput. Aided Des..

[104]  L.-C. Chuang,et al.  A five-axis rough machining approach for a centrifugal impeller , 2004 .

[105]  Christophe Tournier,et al.  The Concept of the Machining Surface in 5-Axis Milling of Free-form Surfaces , 2002 .

[106]  Li-Min Zhu,et al.  Cutter size optimisation and interference-free tool path generation for five-axis flank milling of centrifugal impellers , 2012 .

[107]  Sanjeev Bedi,et al.  Intersection approach to multi-point machining of sculptured surfaces , 1998, Comput. Aided Geom. Des..

[108]  Walter Rubio,et al.  Calculation of tool paths for a torus mill on free-form surfaces on five-axis machines with detection and elimination of interference , 1998 .