Subsurface Imaging of Grain Microstructure Using Picosecond Ultrasonics

Abstract We report on imaging subsurface grain microstructure using picosecond ultrasonics. This approach relies on elastic anisotropy of crystalline materials where ultrasonic velocity depends on propagation direction relative to the crystal axes. Picosecond duration ultrasonic pulses are generated and detected using ultrashort light pulses. In materials that are transparent or semitransparent to the probe wavelength, the probe monitors gigahertz frequency Brillouin oscillations. The frequency of these oscillations is related to the ultrasonic velocity and the optical index of refraction. Ultrasonic waves propagating across a grain boundary experience a change in velocity due to a change in crystallographic orientation relative to the ultrasonic propagation direction. This change in velocity is manifested as a change in the Brillouin oscillation frequency. Using the ultrasonic propagation velocity, the depth of the interface can be determined from the location in time of the transition in oscillation frequency. A subsurface image of the grain boundary is obtained by scanning the beam along the surface. We demonstrate this subsurface imaging capability using a polycrystalline UO2 sample. Cross section liftout analysis of the grain boundary using electron microscopy was used to verify our imaging results.

[1]  A. Rollett,et al.  Site-specific atomic scale analysis of solute segregation to a coincidence site lattice grain boundary. , 2010, Ultramicroscopy.

[2]  I. J. Fritz Elastic properties of UO2 at high pressure , 1976 .

[3]  D. Butt,et al.  Effect of Grain Boundaries on Krypton Segregation Behavior in Irradiated Uranium Dioxide , 2014 .

[4]  C. Dames,et al.  Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths. , 2011, Nano letters.

[5]  F. Flores,et al.  Interfaces in crystalline materials , 1994, Thin Film Physics and Applications.

[6]  P. Lambin,et al.  Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach , 2014, Nature Communications.

[7]  S. Schmidt,et al.  Watching the Growth of Bulk Grains During Recrystallization of Deformed Metals , 2004, Science.

[8]  G. Gottstein,et al.  Concurrent grain boundary motion and grain rotation under an applied stress , 2011 .

[9]  John A. Basinger,et al.  Five-Parameter Grain Boundary Inclination Recovery with EBSD and Interaction Volume Models , 2014, Metallurgical and Materials Transactions A.

[10]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[11]  S. Conradson,et al.  Ultrafast hopping dynamics of 5f electrons in the Mott insulator UO₂ studied by femtosecond pump-probe spectroscopy. , 2011, Physical review letters.

[12]  H. Ogi,et al.  Elastic constant and Brillouin oscillations in sputtered vitreous SiO 2 thin films , 2008 .

[13]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[14]  P. Heitjans,et al.  Diffusion and Ionic Conduction in Nanocrystalline Ceramics , 2003 .

[15]  V. Gusev,et al.  Depth-profiling of elastic inhomogeneities in transparent nanoporous low-k materials by picosecond ultrasonic interferometry , 2009 .

[16]  F. J. Humphreys,et al.  Measurements of grain boundary mobility during recrystallization of a single-phase aluminium alloy , 1999 .

[17]  J. Graham-Pole,et al.  Physical , 1998, The Lancet.

[18]  N. Sammes,et al.  Physical, chemical and electrochemical properties of pure and doped ceria , 2000 .

[19]  N. Chigarev,et al.  Three-dimensional elasto-optical interaction for reflectometric detection of diffracted acoustic fields in picosecond ultrasonics , 2007 .

[20]  B. Gorman,et al.  Utilization of dual-column focused ion beam and scanning electron microscope for three dimensional characterization of high burn-up mixed oxide fuel , 2014 .

[21]  Priya Vashishta,et al.  A Crossover in the Mechanical Response of Nanocrystalline Ceramics , 2005, Science.

[22]  Michael R. Tonks,et al.  Testing thermal gradient driving force for grain boundary migration using molecular dynamics simulations , 2015 .

[23]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[24]  J. Landuyt Interfaces in crystalline materials (monographs on the physics and chemistry of materials, 51) , 1997 .

[25]  Thomsen,et al.  Surface generation and detection of phonons by picosecond light pulses. , 1986, Physical review. B, Condensed matter.

[26]  Paul Munroe,et al.  Three-Dimensional Microstructural Characterization Using Focused Ion Beam Tomography , 2007 .

[27]  A. Nelson,et al.  Thermal conductivity of UO2+x and U4O9−y , 2013 .

[28]  Sylvain Leclercq,et al.  Elevated temperature creep of polycrystalline uranium dioxide: from microscopic mechanisms to macroscopic behaviour , 2002 .

[29]  O. Wright,et al.  Coherent shear phonon generation and detection with ultrashort optical pulses. , 2004, Physical review letters.

[30]  D. Morgan,et al.  Ag diffusion in cubic silicon carbide , 2011 .

[31]  Q. Jia,et al.  Characterization of irradiation damage distribution near TiO2/SrTiO3 interfaces using coherent acoustic phonon interferometry , 2012 .

[32]  G. Ice,et al.  3D X-ray crystal microscope , 2000 .

[33]  V. Gusev,et al.  Depth-profiling of elastic and optical inhomogeneities in transparent materials by picosecond ultrasonic interferometry: Theory , 2011 .

[34]  D. Hurley,et al.  Mechanical Properties of Nuclear Fuel Surrogates using Picosecond Laser Ultrasonics , 2013 .

[35]  P. Clem,et al.  Some optical properties of intrinsic and doped UO2 thin films , 2005 .

[36]  S. Phillpot,et al.  Thermal Conductivity in Nanocrystalline Ceria Thin Films , 2014 .

[37]  D. Hurley,et al.  Measurement of thermal transport using time-resolved thermal wave microscopy , 2011 .

[38]  Osamu Matsuda,et al.  Ultrafast carrier diffusion in gallium arsenide probed with picosecond acoustic pulses , 2001 .

[39]  Christopher R. Stanek,et al.  Multiscale simulation of xenon diffusion and grain boundary segregation in UO 2 , 2015 .

[40]  B. Uberuaga,et al.  The role of charge and ionic radius on fission product segregation to a model UO2 grain boundary , 2013 .

[41]  V. Gusev,et al.  Giant ultrafast photo-induced shear strain in ferroelectric BiFeO3 , 2014, Nature Communications.

[42]  L. Feldman,et al.  Semiconductor point defect concentration profiles measured using coherent acoustic phonon waves , 2009 .

[43]  C. Ronchi,et al.  Effect of burn-up on the thermal conductivity of uranium dioxide up to 100.000 MWd t−1 , 2004 .

[44]  E. Wachsman,et al.  Three-Dimensional Reconstruction of Porous LSCF Cathodes , 2007 .

[45]  J. Schoenes Optical properties and electronic structure of UO2 , 1978 .

[46]  I. M. Robertson,et al.  Towards an integrated materials characterization toolbox , 2013 .