An Improved Bound for Vertex Partitions by Connected Monochromatic K‐Regular Graphs
暂无分享,去创建一个
[1] Vojtech Rödl,et al. Dense Graphs without 3-Regular Subgraphs , 1995, J. Comb. Theory, Ser. B.
[2] Endre Szemerédi,et al. One-sided Coverings of Colored Complete Bipartite Graphs , 2006 .
[3] Tomasz Łuczak,et al. R(Cn,Cn,Cn)≤(4+o(1))n , 1999 .
[4] János Komlós,et al. Blow-up Lemma , 1997, Combinatorics, Probability and Computing.
[5] Stéphan Thomassé,et al. Partitioning a graph into a cycle and an anticycle, a proof of Lehel's conjecture , 2010, J. Comb. Theory, Ser. B.
[6] P. Erdos,et al. On maximal paths and circuits of graphs , 1959 .
[7] Penny E. Haxell,et al. Partitioning Complete Bipartite Graphs by Monochromatic Cycles, , 1997, J. Comb. Theory, Ser. B.
[8] Endre Szemerédi,et al. An improved bound for the monochromatic cycle partition number , 2006, J. Comb. Theory, Ser. B.
[9] Vojtech Rödl,et al. Partitioning Two-Coloured Complete Graphs into Two Monochromatic Cycles , 1998, Comb. Probab. Comput..
[10] Gábor N. Sárközy,et al. Vertex Partitions by Connected Monochromatic k-Regular Graphs , 2000, J. Comb. Theory, Ser. B.
[11] András Gyárfás,et al. Covering Complete Graphs by Monochromatic Paths , 1989 .
[12] Paul Erdös,et al. Vertex coverings by monochromatic cycles and trees , 1991, J. Comb. Theory, Ser. B.
[13] Gábor N. Sárközy,et al. An algorithmic version of the blow-up lemma , 1998 .
[14] Peter Allen. Covering Two-Edge-Coloured Complete Graphs with Two Disjoint Monochromatic Cycles , 2008, Comb. Probab. Comput..
[15] Daniela Kühn,et al. Packings in Dense Regular Graphs , 2005, Comb. Probab. Comput..
[16] M. Simonovits,et al. Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .
[17] B. Bollobás,et al. Extremal Graph Theory , 2013 .
[18] E. Szemerédi. Regular Partitions of Graphs , 1975 .