An Improved Bound for Vertex Partitions by Connected Monochromatic K‐Regular Graphs

Improving a result of Sarkozy and Selkow, we show that for all integers there exists a constant such that if and the edges of the complete graph are colored with r colors then the vertex set of can be partitioned into at most vertex disjoint connected monochromatic k-regular subgraphs and vertices. This is close to best possible. © 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 127–145, 2013

[1]  Vojtech Rödl,et al.  Dense Graphs without 3-Regular Subgraphs , 1995, J. Comb. Theory, Ser. B.

[2]  Endre Szemerédi,et al.  One-sided Coverings of Colored Complete Bipartite Graphs , 2006 .

[3]  Tomasz Łuczak,et al.  R(Cn,Cn,Cn)≤(4+o(1))n , 1999 .

[4]  János Komlós,et al.  Blow-up Lemma , 1997, Combinatorics, Probability and Computing.

[5]  Stéphan Thomassé,et al.  Partitioning a graph into a cycle and an anticycle, a proof of Lehel's conjecture , 2010, J. Comb. Theory, Ser. B.

[6]  P. Erdos,et al.  On maximal paths and circuits of graphs , 1959 .

[7]  Penny E. Haxell,et al.  Partitioning Complete Bipartite Graphs by Monochromatic Cycles, , 1997, J. Comb. Theory, Ser. B.

[8]  Endre Szemerédi,et al.  An improved bound for the monochromatic cycle partition number , 2006, J. Comb. Theory, Ser. B.

[9]  Vojtech Rödl,et al.  Partitioning Two-Coloured Complete Graphs into Two Monochromatic Cycles , 1998, Comb. Probab. Comput..

[10]  Gábor N. Sárközy,et al.  Vertex Partitions by Connected Monochromatic k-Regular Graphs , 2000, J. Comb. Theory, Ser. B.

[11]  András Gyárfás,et al.  Covering Complete Graphs by Monochromatic Paths , 1989 .

[12]  Paul Erdös,et al.  Vertex coverings by monochromatic cycles and trees , 1991, J. Comb. Theory, Ser. B.

[13]  Gábor N. Sárközy,et al.  An algorithmic version of the blow-up lemma , 1998 .

[14]  Peter Allen Covering Two-Edge-Coloured Complete Graphs with Two Disjoint Monochromatic Cycles , 2008, Comb. Probab. Comput..

[15]  Daniela Kühn,et al.  Packings in Dense Regular Graphs , 2005, Comb. Probab. Comput..

[16]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[17]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[18]  E. Szemerédi Regular Partitions of Graphs , 1975 .