Multiview Stereo via Volumetric Graph-Cuts and Occlusion Robust Photo-Consistency

This paper presents a volumetric formulation for the multiview stereo problem which is amenable to a computationally tractable global optimization using Graph-cuts. Our approach is to seek the optimal partitioning of 3D space into two regions labeled as "object" and "empty" under a cost functional consisting of the following two terms: 1) A term that forces the boundary between the two regions to pass through photo-consistent locations; and 2) a ballooning term that inflates the "object" region. To take account of the effect of occlusion on the first term, we use an occlusion robust photo-consistency metric based on normalized cross correlation, which does not assume any geometric knowledge about the reconstructed object. The globally optimal 3D partitioning can be obtained as the minimum cut solution of a weighted graph.

[1]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[2]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[3]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Ingemar J. Cox,et al.  A maximum-flow formulation of the N-camera stereo correspondence problem , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[5]  Olivier D. Faugeras,et al.  Variational principles, surface evolution, PDEs, level set methods, and the stereo problem , 1998, IEEE Trans. Image Process..

[6]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[7]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[9]  Vladimir Kolmogorov,et al.  Multi-camera Scene Reconstruction via Graph Cuts , 2002, ECCV.

[10]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  O. Faugeras,et al.  Variational principles, surface evolution, PDE's, level set methods and the stereo problem , 1998, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[12]  Luc Van Gool,et al.  Dense matching of multiple wide-baseline views , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[13]  Vladimir Kolmogorov,et al.  Computing geodesics and minimal surfaces via graph cuts , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[14]  Francis Schmitt,et al.  Silhouette and stereo fusion for 3D object modeling , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[15]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[16]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Francis Schmitt,et al.  Silhouette and stereo fusion for 3D object modeling , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[18]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Patrick Pérez,et al.  Interactive Image Segmentation Using an Adaptive GMMRF Model , 2004, ECCV.

[20]  Kiriakos N. Kutulakos,et al.  A Theory of Shape by Space Carving , 2000, International Journal of Computer Vision.

[21]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[22]  Roberto Cipolla,et al.  Multi-view stereo via volumetric graph-cuts , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[23]  Pascal Fua,et al.  Object-centered surface reconstruction: Combining multi-image stereo and shading , 1995, International Journal of Computer Vision.

[24]  Marc Pollefeys,et al.  Multi-view reconstruction using photo-consistency and exact silhouette constraints: a maximum-flow formulation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[25]  Victor S. Lempitsky,et al.  Oriented Visibility for Multiview Reconstruction , 2006, ECCV.

[26]  Adrian Hilton,et al.  Volumetric Stereo with Silhouette and Feature Constraints , 2006, BMVC.

[27]  Leif Kobbelt,et al.  Hierarchical Volumetric Multi-view Stereo Reconstruction of Manifold Surfaces based on Dual Graph Embedding , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[28]  Richard Szeliski,et al.  A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[29]  Larry S. Davis,et al.  3D Surface Reconstruction Using Graph Cuts with Surface Constraints , 2006, ECCV.

[30]  Michael Goesele,et al.  Multi-View Stereo Revisited , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[31]  Olivier D. Faugeras,et al.  Multi-View Stereo Reconstruction and Scene Flow Estimation with a Global Image-Based Matching Score , 2007, International Journal of Computer Vision.

[32]  Victor S. Lempitsky,et al.  From Photohulls to Photoflux Optimization , 2006, BMVC.

[33]  Roberto Cipolla,et al.  Silhouette Coherence for Camera Calibration under Circular Motion , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Jean Ponce,et al.  Carved Visual Hulls for Image-Based Modeling , 2006, International Journal of Computer Vision.