Comparative study of the Mn4+ 2E → 4A2 luminescence in isostructural RE2Sn2O7:Mn4+ pyrochlores (RE3+ = Y3+, Lu3+ or Gd3+)

[1]  Ru‐Shi Liu,et al.  Critical Red Components for Next-Generation White LEDs. , 2016, The journal of physical chemistry letters.

[2]  P. Smet,et al.  Luminescent Behavior of the K2SiF6:Mn4+ Red Phosphor at High Fluxes and at the Microscopic Level , 2016 .

[3]  S. Adachi,et al.  Photo-induced degradation and thermal decomposition in ZnSnF6·6H2O:Mn4+ red-emitting phosphor , 2015 .

[4]  M. Brik,et al.  Influence of Covalency on the Mn4+ 2Eg→4A2g Emission Energy in Crystals , 2015 .

[5]  M. Du Mn4+ emission in pyrochlore oxides , 2015 .

[6]  Yang Li,et al.  A strategy for developing near infrared long-persistent phosphors: taking MAlO3:Mn4+,Ge4+ (M = La, Gd) as an example , 2014 .

[7]  Xuewen Yin,et al.  Temperature dependent red luminescence from a distorted Mn4+ site in CaAl4O7:Mn4+. , 2013, Optics express.

[8]  M. Brik,et al.  Crystal field studies of the Mn4+ energy levels in the perovskite, LaAlO3 , 2013 .

[9]  M. Brik,et al.  Comparative crystal field analysis of energy level schemes and nephelauxetic effect for Cr4+, Cr3+, and Mn4+ ions in Y2Sn2O7 pyrochlore , 2013 .

[10]  M. Brik,et al.  On the optical properties of the Mn4+ ion in solids , 2013 .

[11]  M. Brik,et al.  The dependence of 10 Dq crystal field parameter for Mn4+ (3d3 configuration) and the magnitude of 7F1 level splitting for Eu3+ (4f6 configuration) on pyrochlore compositions , 2012 .

[12]  M. Brik,et al.  Comparative analysis of crystal field effects and optical spectroscopy of six-coordinated Mn4+ ion in the Y2Ti2O7 and Y2Sn2O7 pyrochlores , 2011 .

[13]  S. Adachi,et al.  Properties of Na2SiF6:Mn4+ and Na2GeF6:Mn4+ red phosphors synthesized by wet chemical etching , 2009 .

[14]  S. Adachi,et al.  Mn4 + -Activated Red Photoluminescence in K2SiF6 Phosphor , 2008 .

[15]  K. Morinaga,et al.  Fluorescence properties of Mn4+ in CaAl12O19 compounds as red-emitting phosphor for white LED , 2005 .

[16]  A. Durygin,et al.  Mn-doped YAlO3 crystal: a new potential TLD phosphor , 2005 .

[17]  M. Noginov,et al.  Spectroscopic studies of Mn 4+ ions in yttrium orthoaluminate , 1999 .

[18]  G. Loutts,et al.  Optical Experiments With Manganese Doped Yttrium Orthoaluminate, a Potential Material for Holographic Recording and Data Storage , 1998 .

[19]  Brett A. Hunter,et al.  Structural and Bonding Trends in Tin Pyrochlore Oxides , 1997 .

[20]  B. Henderson,et al.  Optical spectroscopy of inorganic solids , 1989 .

[21]  E. Husson,et al.  Comparison of the force field in various pyrochlore families. I. The A2B2O7 oxides , 1983 .

[22]  G. Blasse,et al.  The luminescence of tetravalent manganese in CaZrO3:Mn , 1981 .

[23]  C. D. Flint,et al.  Vibronic spectra and lattice dynamics of Cs2MnF6 and A12MIVF6:MnF2−6 , 1976 .

[24]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[25]  A. Lane,et al.  Single-crystal polarized infrared and Raman spectra and normal-coordinate analysis of some Group 4 complex hexafluorometalates , 1976 .

[26]  Chien-chang Lin γ-Ray intensities in the decay of 140Ba140La and 152Eu: use of 13 y 152Eu as a secondary calibration standard , 1976 .

[27]  G. Blasse,et al.  Vibrational spectra of oxidic stannates in relation to order-disorder phenomena , 1976 .

[28]  A. G. Paulusz Efficient Mn(IV) Emission in Fluorine Coordination , 1973 .

[29]  N. T. McDevitt,et al.  Infrared Lattice Spectra of Rare-Earth Stannate and Titanate Pyrochlores , 1971 .

[30]  D. F. Nelson,et al.  Relation between Absorption and Emission in the Region of the R Lines of Ruby , 1965 .

[31]  Y. Tanabe,et al.  On the Absorption Spectra of Complex Ions II , 1954 .