Electron-phonon coupling superconductivity in two-dimensional orthorhombic MB6 (M=Mg,Ca,Ti,Y) and hexagonal MB6 (M=Mg,Ca,Sc,Ti)

Combining crystal structure search and first-principles calculations, we report a series of two-dimensional (2D) metal borides including orthorhombic (ort-) MB6 (M=Mg, Ca) and hexagonal (hex-) MB6 (M=Mg, Ca, Sc, Ti, Sr, Y). Then, we investigate their geometrical structures, bonding properties, electronic structures, mechanical properties, phonon dispersions, thermal stability, dynamic stability, electron-phonon coupling (EPC), superconducting properties and so on. Our ab initio molecular dynamics simulation results show that these MB6 can maintain their original configurations up to 700/1000 K, indicating their excellent thermal stability. All their elastic constants satisfy the Born mechanically stable criteria and no visible imaginary frequencies are observed in their phonon dispersions. The EPC results show that these 2D MB6 are all intrinsic phonon-mediated superconductors with the superconducting transition temperature (Tc??) in the range of 2.2-21.3 K. Among them, the highest Tc (21.3 K) appears in hex-CaB6, whose EPC constant () is 0.94. By applying tensile/compressive strains on ort-/hex-CaB6, we find that the compressive strain can obviously soften the acoustic phonon branch and enhance the EPC as well as Tc. The Tc of the hex-CaB6 can be increased from 21.3 K to 28 K under compressive strain of 3%. These findings enrich the database of 2D superconductors and should stimulate experimental synthesizing and characterizing of 2D superconducting metal borides.

[1]  C. Ting,et al.  Phonon-mediated superconductivity in aluminum-deposited graphene AlC8 , 2020 .

[2]  Peng-Fei Liu,et al.  Superconductivity in predicted two dimensional XB6 (X = Ga, In) , 2020 .

[3]  G. Profeta,et al.  Superconductivity in tin selenide under pressure , 2019, Physical Review Materials.

[4]  Jian Lv,et al.  Route to a Superconducting Phase above Room Temperature in Electron-Doped Hydride Compounds under High Pressure. , 2019, Physical review letters.

[5]  T. Bo,et al.  Novel structures of two-dimensional tungsten boride and their superconductivity. , 2019, Physical chemistry chemical physics : PCCP.

[6]  Hongxing Xu,et al.  Topological band evolution between Lieb and kagome lattices , 2019, Physical Review B.

[7]  T. Bo,et al.  Prediction of phonon-mediated superconductivity in two-dimensional Mo2B2 , 2019, Journal of Materials Chemistry C.

[8]  T. Xiang,et al.  Electron-phonon coupling in a honeycomb borophene grown on Al(111) surface , 2019, Physical Review B.

[9]  P. Oppeneer,et al.  Hydrogen-Induced High-Temperature Superconductivity in Two-Dimensional Materials: The Example of Hydrogenated Monolayer MgB_{2}. , 2019, Physical review letters.

[10]  E. Ganz,et al.  Two-Dimensional Anti-Van't Hoff/Le Bel Array AlB6 with High Stability, Unique Motif, Triple Dirac Cones, and Superconductivity. , 2019, Journal of the American Chemical Society.

[11]  D. Graf,et al.  Superconductivity at 250 K in lanthanum hydride under high pressures , 2018, Nature.

[12]  R. Hemley,et al.  Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures. , 2018, Physical review letters.

[13]  S. Dong,et al.  Protective layer enhanced the stability and superconductivity of tailored antimonene bilayer , 2018, Physical Review Materials.

[14]  Yanming Ma,et al.  High-Pressure Evolution of Unexpected Chemical Bonding and Promising Superconducting Properties of YB6 , 2018, The Journal of Physical Chemistry C.

[15]  Yinchang Zhao,et al.  Multigap anisotropic superconductivity in borophenes , 2018, Physical Review B.

[16]  Shaomin Li,et al.  Superconductivity in Potassium-Intercalated T d-WTe2. , 2018, Nano letters.

[17]  Fangwei Wang,et al.  First-principles study of superconductivity in the two- and three-dimensional forms of PbTiSe2 : Suppressed charge density wave in 1T−TiSe2 , 2018, Physical Review B.

[18]  Jijun Zhao,et al.  Superconductivity in two-dimensional phosphorus carbide (β0-PC). , 2018, Physical chemistry chemical physics : PCCP.

[19]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[20]  Xiang-Rong Chen,et al.  Tunable electron-phonon coupling superconductivity in platinum diselenide , 2017 .

[21]  Yong Xu,et al.  Superconductivity in few-layer stanene , 2017, 1712.03695.

[22]  Yu-Jun Zhao,et al.  Phonon-mediated superconductivity in Mg intercalated bilayer borophenes. , 2017, Physical chemistry chemical physics : PCCP.

[23]  Roald Hoffmann,et al.  Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure , 2017, Proceedings of the National Academy of Sciences.

[24]  J. Narayan,et al.  High-Temperature Superconductivity in Boron-Doped Q-Carbon. , 2017, ACS nano.

[25]  Jian Lv,et al.  Materials discovery at high pressures , 2017 .

[26]  Hang Liu,et al.  Suppressed superconductivity in substrate-supported β12 borophene by tensile strain and electron doping , 2017 .

[27]  S. Dong,et al.  Superconductivity of monolayer Mo2C: The key role of functional groups. , 2017, The Journal of chemical physics.

[28]  Cheng-Cheng Liu,et al.  Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si , 2016, Nature Communications.

[29]  Feliciano Giustino,et al.  Electron-phonon interactions from first principles , 2016, 1603.06965.

[30]  Xun-Wang Yan,et al.  Prediction of phonon-mediated superconductivity in borophene , 2016, 1602.02930.

[31]  Cheng-Cheng Liu,et al.  Discovery of two-dimensional Dirac nodal line fermions , 2016 .

[32]  T. Uchihashi Two-dimensional superconductors with atomic-scale thickness , 2016, 1608.06997.

[33]  Yinchang Zhao,et al.  Phonon-mediated superconductivity in borophenes , 2016 .

[34]  Y. Sun,et al.  Enhanced superconductivity by strain and carrier-doping in borophene: A first principles prediction , 2016, 1604.06519.

[35]  S. Dong,et al.  Strain-enhanced superconductivity of Mo X 2 (X =S or Se) bilayers with Na intercalation , 2016, 1604.02775.

[36]  B. Yakobson,et al.  Can Two-Dimensional Boron Superconduct? , 2016, Nano letters.

[37]  Wu Li,et al.  Physically founded phonon dispersions of few-layer materials and the case of borophene , 2016, 1601.02884.

[38]  S. Shi,et al.  Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene. , 2015, Nanoscale.

[39]  K. T. Law,et al.  Ising pairing in superconducting NbSe2 atomic layers , 2015, Nature Physics.

[40]  T. Cren,et al.  Review of 2D superconductivity: the ultimate case of epitaxial monolayers , 2016 .

[41]  Ning Kang,et al.  Large-area high-quality 2D ultrathin Mo2C superconducting crystals. , 2015, Nature materials.

[42]  E. Ganz,et al.  Revealing unusual chemical bonding in planar hyper-coordinate Ni2Ge and quasi-planar Ni2Si two-dimensional crystals. , 2015, Physical chemistry chemical physics : PCCP.

[43]  U. Starke,et al.  Evidence for superconductivity in Li-decorated monolayer graphene , 2015, Proceedings of the National Academy of Sciences.

[44]  E. Ganz,et al.  Post-anti-van't Hoff-Le Bel motif in atomically thin germanium-copper alloy film. , 2015, Physical chemistry chemical physics : PCCP.

[45]  P. Dai Antiferromagnetic order and spin dynamics in iron-based superconductors , 2015, 1503.02340.

[46]  E. Ganz,et al.  Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding. , 2015, Journal of the American Chemical Society.

[47]  Y. Kawazoe,et al.  Penta-graphene: A new carbon allotrope , 2015, Proceedings of the National Academy of Sciences.

[48]  Yeliang Wang,et al.  A novel two-dimensional MgB6 crystal: metal-layer stabilized boron kagome lattice. , 2015, Physical chemistry chemical physics : PCCP.

[49]  A. P. Drozdov,et al.  Conventional superconductivity at 190 K at high pressures , 2014, 1412.0460.

[50]  Franccois-Xavier Coudert,et al.  Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems , 2014, 1410.0065.

[51]  E. R. Margine,et al.  Two-gap superconductivity in heavily n-doped graphene: Ab initio Migdal-Eliashberg theory , 2014, 1407.7005.

[52]  Yanming Ma,et al.  The metallization and superconductivity of dense hydrogen sulfide. , 2014, The Journal of chemical physics.

[53]  Feng Liu,et al.  First-principles calculations on the effect of doping and biaxial tensile strain on electron-phonon coupling in graphene. , 2013, Physical review letters.

[54]  M. Calandra,et al.  First-principles theory of anharmonicity and the inverse isotope effect in superconducting palladium-hydride compounds. , 2013, Physical review letters.

[55]  E. R. Margine,et al.  Anisotropic Migdal-Eliashberg theory using Wannier functions , 2012, 1211.3345.

[56]  Yanming Ma,et al.  An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm. , 2012, The Journal of chemical physics.

[57]  Xiaojun Wu,et al.  Two-dimensional boron monolayer sheets. , 2012, ACS nano.

[58]  Jian Lv,et al.  CALYPSO: A method for crystal structure prediction , 2012, Comput. Phys. Commun..

[59]  R. E. Mapasha,et al.  Mechanical properties of graphene and boronitrene , 2012 .

[60]  K. Bohnen,et al.  Extended phonon collapse and the origin of the charge-density wave in 2H-NbSe2. , 2011, Physical review letters.

[61]  Jian Lv,et al.  Crystal structure prediction via particle-swarm optimization , 2010, 1008.3601.

[62]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[63]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[64]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[65]  Lawrence N. Virgin,et al.  Vibration of Axially-Loaded Structures , 2007 .

[66]  Y. Paderno,et al.  Superconductivity mediated by a soft phonon mode: Specific heat, resistivity, thermal expansion, and magnetization of Y B 6 , 2005, cond-mat/0510572.

[67]  G. Profeta,et al.  Ab-initio theory of superconductivity - I: Density functional formalism and approximate functionals , 2004, cond-mat/0408685.

[68]  G. Profeta,et al.  Superconducting properties of MgB2 from first principles. , 2004, Physical review letters.

[69]  J Kortus,et al.  Beyond Eliashberg superconductivity in MgB2: anharmonicity, two-phonon scattering, and multiple gaps. , 2001, Physical review letters.

[70]  J. Nagamatsu,et al.  Superconductivity at 39 K in magnesium diboride , 2001, Nature.

[71]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[72]  Jens Kortus,et al.  Beyond Eliashberg Superconductivity in MgB2 , 2001 .

[73]  M. Scheffler,et al.  Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory , 1998, cond-mat/9807418.

[74]  Andreas Savin,et al.  ELF: The Electron Localization Function , 1997 .

[75]  N. Ashcroft,et al.  High Temperature Superconductivity in Metallic Hydrogen:Electron-Electron Enhancements , 1997 .

[76]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[77]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[78]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[79]  E. Dagotto Correlated electrons in high-temperature superconductors , 1993, cond-mat/9311013.

[80]  R. Dynes,et al.  Transition temperature of strong-coupled superconductors reanalyzed , 1975 .

[81]  P. B. Allen Neutron spectroscopy of superconductors , 1972 .

[82]  W. L. Mcmillan TRANSITION TEMPERATURE OF STRONG-COUPLED SUPERCONDUCTORS. , 1968 .

[83]  L. Cooper,et al.  Theory of superconductivity , 1957 .