Computation of resonant modes for axisymmetric Maxwell cavities using hp‐version edge finite elements

The computation of the resonant frequencies for closed cavities is not a trivial task: Multi-materials and sharp corners all give rise to highly singular eigenfunctions. However, an approach using hp-finite elements is well suited to such problems and, with the correct combination of h- and p-refinements, it yields the theoretically predicated exponential rates of convergence. In this paper, we present a novel approach to the solution of axisymmetric cavity problems which uses a hierarchic H1 and H(curl) conforming finite element basis. A selection of numerical examples is included and these demonstrate that the exponential rates of convergence are achieved in practice. Copyright © 2005 John Wiley & Sons, Ltd.

[1]  Mark Ainsworth,et al.  Computation of Maxwell eigenvalues on curvilinear domains using hp -version Nédélec elements , 2003 .

[2]  Mark Ainsworth,et al.  hp-Approximation Theory for BDFM and RT Finite Elements on Quadrilaterals , 2002, SIAM J. Numer. Anal..

[3]  Mark Ainsworth,et al.  Hierarchic finite element bases on unstructured tetrahedral meshes , 2003 .

[4]  Mark Ainsworth,et al.  Hierarchic hp-edge element families for Maxwell's equations on hybrid quadrilateral/triangular meshes , 2001 .

[5]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[6]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[7]  G. Mur Edge elements, their advantages and their disadvantages , 1994 .

[8]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[9]  A. Kameari,et al.  Symmetric second order edge elements for triangles and tetrahedra , 1999 .

[10]  Accuracy of eigenvalue obtained with hybrid elements on axisymmetric domains , 1998 .

[11]  Roberto D. Graglia,et al.  Higher order interpolatory vector bases for computational electromagnetics," Special Issue on "Advanced Numerical Techniques in Electromagnetics , 1997 .

[12]  J. Coyle,et al.  Computing Maxwell eigenvalues by using higher order edge elements in three dimensions , 2003 .

[13]  Z. Cendes,et al.  Spurious modes in finite-element methods , 1995 .

[14]  Leszek Demkowicz,et al.  An hp‐adaptive finite element method for electromagnetics—part II: A 3D implementation , 2002 .

[15]  Jin-Fa Lee,et al.  Finite-element analysis of axisymmetric cavity resonator using a hybrid edge element technique , 1993 .

[16]  J. P. Webb Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements , 1999 .

[17]  D. Boffi,et al.  Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation , 1999 .

[18]  Patrick Lacoste,et al.  Solution of Maxwell equation in axisymmetric geometry by Fourier series decompostion and by use of H (rot) conforming finite element , 2000, Numerische Mathematik.

[19]  L. Demkowicz,et al.  An hp-adaptive finite element method for electromagnetics: Part 1: Data structure and constrained approximation , 2000 .

[20]  L. Demkowicz,et al.  Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements , 1998 .

[21]  L. S. Andersen,et al.  Hierarchical tangential vector finite elements for tetrahedra , 1998, IEEE Antennas and Propagation Society International Symposium. 1998 Digest. Antennas: Gateways to the Global Network. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.98CH36.