Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term

We present numerical schemes for the incompressible Navier-Stokes equations based on a primitive variable formulation in which the incompressibility constraint has been replaced by a pressure Poisson equation. The pressure is treated explicitly in time, completely decoupling the computation of the momentum and kinematic equations. The result is a class of extremely efficient Navier-Stokes solvers. Full time accuracy is achieved for all flow variables. The key to the schemes is a Neumann boundary condition for the pressure Poisson equation which enforces the incompressibility condition for the velocity field. Irrespective of explicit or implicit time discretization of the viscous term in the momentum equation the explicit time discretization of the pressure term does not affect the time step constraint. Indeed, we prove unconditional stability of the new formulation for the Stokes equation with explicit treatment of the pressure term and first or second order implicit treatment of the viscous term. Systematic numerical experiments for the full Navier-Stokes equations indicate that a second order implicit time discretization of the viscous term, with the pressure and convective terms treated explicitly, is stable under the standard CFL condition. Additionally, various numerical examples are presented, including both implicit and explicit time discretizations, using spectral and finite difference spatial discretizations, demonstrating the accuracy, flexibility and efficiency of this class of schemes. In particular, a Galerkin formulation is presented requiring only C0 elements to implement.

[1]  Frans N. van de Vosse,et al.  An approximate projec-tion scheme for incompressible ow using spectral elements , 1996 .

[2]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[3]  F. Wubs Notes on numerical fluid mechanics , 1985 .

[4]  Shiyi Chen,et al.  On statistical correlations between velocity increments and locally averaged dissipation in homogeneous turbulence , 1993 .

[5]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[6]  E Weinan,et al.  Projection Method II: Godunov--Ryabenki Analysis , 1996 .

[7]  G. S. Patterson,et al.  Spectral Calculations of Isotropic Turbulence: Efficient Removal of Aliasing Interactions , 1971 .

[8]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[9]  Hans Johnston,et al.  Finite Difference Schemes for Incompressible Flow Based on Local Pressure Boundary Conditions , 2002 .

[10]  S. Orszag,et al.  Boundary conditions for incompressible flows , 1986 .

[11]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..

[12]  R. Peyret,et al.  A Chebyshev collocation method for the Navier–Stokes equations with application to double‐diffusive convection , 1989 .

[13]  J. Kan A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .

[14]  Robert McDougall Kerr Evidence for a Singularity of the Three Dimensional, Incompressible Euler Equations , 1993 .

[15]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[16]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[17]  Jian‐Guo Liu,et al.  Vorticity Boundary Condition and Related Issues for Finite Difference Schemes , 1996 .

[18]  ShenJie Efficient spectral-Galerkin method I , 1994 .

[19]  William D. Henshaw,et al.  A Fourth-Order Accurate Method for the Incompressible Navier-Stokes Equations on Overlapping Grids , 1994 .

[20]  R. Peyret Spectral Methods for Incompressible Viscous Flow , 2002 .

[21]  E Weinan,et al.  Essentially Compact Schemes for Unsteady Viscous Incompressible Flows , 1996 .

[22]  P. Gresho Some current CFD issues relevant to the incompressible Navier-Stokes equations , 1991 .

[23]  Jian‐Guo Liu,et al.  Projection method I: convergence and numerical boundary layers , 1995 .

[24]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[25]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[26]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[27]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[28]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[29]  Joel Ferziger,et al.  Higher Order Methods for Incompressible Fluid Flow: by Deville, Fischer and Mund, Cambridge University Press, 499 pp. , 2003 .

[30]  Jie Shen,et al.  A new class of truly consistent splitting schemes for incompressible flows , 2003 .

[31]  U. Schumann,et al.  Treatment of incompressibility and boundary conditions in 3-D numerical spectral simulations of plane channel flows , 1980 .

[32]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .

[33]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[34]  R. Sani,et al.  On pressure boundary conditions for the incompressible Navier‐Stokes equations , 1987 .

[35]  M. Minion,et al.  Accurate projection methods for the incompressible Navier—Stokes equations , 2001 .

[36]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[37]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[38]  S. Orszag,et al.  High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .

[39]  E Weinan,et al.  GAUGE METHOD FOR VISCOUS INCOMPRESSIBLE FLOWS , 2003 .