Coordinated self-interference of wave packets: a new route towards classicality for structurally stable systems

[1]  N. Craig Hydrogen Atom , 2021, Quantum Mechanics.

[2]  S. Bellucci,et al.  On the phase-space catastrophes in dynamics of the quantum particle in an optical lattice potential. , 2020, Chaos.

[3]  Veneranda G. Garces,et al.  Watching a photon interfere with itself , 2020 .

[4]  M. Ćosić,et al.  Superfocusing and zero-degree focusing in planar channeling of protons in a thin silicon crystal , 2019, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.

[5]  M. Ćosić,et al.  Rainbows in Channeling of Charged Particles in Crystals and Nanotubes , 2017 .

[6]  M. Ćosić,et al.  Effective quantum dynamics in a weakly anharmonic interaction in the vicinity of a focusing point , 2017 .

[7]  M. Cecchini,et al.  Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease , 2016, Scientific Reports.

[8]  G. Gelinck,et al.  Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors , 2016, Scientific Reports.

[9]  M. Ćosić,et al.  Quantum primary rainbows in transmission of positrons through very short carbon nanotubes , 2016 .

[10]  D. Ferry Phase-space functions: can they give a different view of quantum mechanics? , 2015 .

[11]  Hayato Goto Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network , 2015, Scientific Reports.

[12]  D. Ferry Phase-space functions: can they give a different view of quantum mechanics? , 2015, Journal of Computational Electronics.

[13]  S. Petrović,et al.  Quantum rainbow channeling of positrons in very short carbon nanotubes , 2013 .

[14]  H. Winter,et al.  Fast atom diffraction during grazing scattering from surfaces , 2011 .

[15]  G. Li,et al.  High-spin yrast and yrare structures in 112In , 2010 .

[16]  J. Gazeau Coherent states in quantum physics: an overview , 2009, Journal of Physics: Conference Series.

[17]  S. Ohkubo,et al.  Luneburg lens approach to nuclear rainbow scattering. , 2002, Physical review letters.

[18]  W. Zurek Sub-Planck spots of Schroedinger cats and quantum decoherence , 2002, quant-ph/0201118.

[19]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[20]  C. A. Hobbs,et al.  An adaptive contour code for the numerical evaluation of the oscillatory cuspoid canonical integrals and their derivatives , 2000 .

[21]  M. G. Crawford Temporally stable coherent states in energy-degenerate systems: The hydrogen atom , 2000, quant-ph/0101092.

[22]  R. Fox,et al.  Generalized coherent states and quantum-classical correspondence , 2000 .

[23]  C. Emmeche,et al.  On emergence and explanation , 1997 .

[24]  J. Klauder Coherent states for the hydrogen atom , 1995, quant-ph/9511033.

[25]  Joseph V. Hajnal,et al.  Phase saddles and dislocations in two-dimensional waves such as the tides , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[26]  R. Kosloff Time-dependent quantum-mechanical methods for molecular dynamics , 1988 .

[27]  E. Rowe The classical limit of quantum mechanical Coulomb scattering , 1987 .

[28]  J. Connor,et al.  Theory of cusped rainbows in elastic scattering: Uniform semiclassical calculations using Pearcey’s integral , 1981 .

[29]  M. Berry Semi-classical mechanics in phase space: A study of Wigner’s function , 1977, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[30]  M. Berry,et al.  Dislocations in wave trains , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[31]  M. Berry Diffraction in crystals at high energies , 1971 .

[32]  J. Wheeler,et al.  Semiclassical description of scattering , 1959 .

[33]  E. Wigner,et al.  On the Contraction of Groups and Their Representations. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. E. Moyal Quantum mechanics as a statistical theory , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[35]  J. Neumann Zur Operatorenmethode In Der Klassischen Mechanik , 1932 .

[36]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[37]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[38]  H. Weyl Quantenmechanik und Gruppentheorie , 1927 .

[39]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[40]  J. M. Boardman,et al.  Singularities of differentiable maps , 2011 .

[41]  V. M. MORPHOLOGIES OF CAUSTICS AND THEIR DIFFRACTION PATTERNS , 2008 .

[42]  K. Kay,et al.  Semiclassical initial value treatments of atoms and molecules. , 2005, Annual review of physical chemistry.

[43]  HA MILTONIAN SYSTEMS AND TRANSFORMATIONS IN HILBERT SPACE , 2005 .

[44]  John A. Adam,et al.  The mathematical physics of rainbows and glories , 2002 .

[45]  D. Favrholdt Niels Bohr: Collected Works , 2000 .

[46]  John F Nye,et al.  Natural focusing and fine structure of light: caustics and wave dislocations , 1999 .

[47]  M. Berry Asymptotics, singularities and the reduction of theories , 1995 .

[48]  Barrett,et al.  Angular distribution of ions axially channeled in a very thin crystal: Experimental and theoretical results. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[49]  Jean Zinn-Justin,et al.  Chaos et physique quantique = Chaos and quantum physics , 1991 .

[50]  P. Giblin,et al.  Curves and Singularities , 1984 .

[51]  J. Hannay,et al.  Geometry of two dimensional tori in phase space: Projections, sections and the Wigner function , 1982 .

[52]  C. Upstill,et al.  IV Catastrophe Optics: Morphologies of Caustics and Their Diffraction Patterns , 1980 .

[53]  J. Conway Functions of One Complex Variable II , 1978 .

[54]  Donald S. Gemmell,et al.  Channeling and related effects in the motion of charged particles through crystals , 1974 .

[55]  Michael V Berry,et al.  Semiclassical approximations in wave mechanics , 1972 .

[56]  W. Miller Semiclassical Theory of Atom–Diatom Collisions: Path Integrals and the Classical S Matrix , 1970 .

[57]  J. Lindhard,et al.  INFLUENCE OF CRYSTAL LATTICE ON MOTION OF ENERGETIC CHARGED PARTICLES. , 1965 .

[58]  Niels Bohr,et al.  The penetration of atomic particles through matter , 1948 .

[59]  Kodi Husimi,et al.  Some Formal Properties of the Density Matrix , 1940 .

[60]  S. Lawomir,et al.  Quantum Maps , 2022 .