Numerical study of Si nanoparticle formation by SiCl4 hydrogenation in RF plasma

Nanocrystalline silicon (nc-Si) is a promising material for many applications related to electronics and optoelectronics. This work performs numerical simulations in order to understand a new process with high deposition rate production of nc-Si in a radio-frequency plasma reactor. Inductive plasma formation, reaction kinetics and nanoparticle formation have been considered in a sophisticated model. Results show that the plasma parameters could be adjusted in order to improve selectivity between nanoparticle and molecule formation and, thus, the deposition rate. Also, a parametric study helps to optimize the system with appropriate operating conditions.

[1]  Maxwell J. Crossley,et al.  Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion , 2012 .

[2]  Pierre Proulx,et al.  Extended-field electromagnetic model for inductively coupled plasma , 2001 .

[3]  Takamasa Ishigaki,et al.  Controlled synthesis of alumina nanoparticles using inductively coupled thermal plasma with enhanced quenching , 2007 .

[4]  J. Meunier,et al.  Carbon Blacks Produced by Thermal Plasma: the Influence of the Reactor Geometry on the Product Morphology , 2010 .

[5]  J. Grabis,et al.  Plasma-Chemical Synthesis of Nanosized Powders-Nitrides, Carbides, Oxides, Carbon Nanotubes and Fullerenes , 2012 .

[6]  Dominic F. Lee,et al.  Heteroepitaxial film crystal silicon on Al2O3: new route to inexpensive crystal silicon photovoltaics , 2011 .

[7]  Masaya Shigeta,et al.  Growth mechanism of silicon-based functional nanoparticles fabricated by inductively coupled thermal plasmas , 2007 .

[8]  T. Nozaki,et al.  Synthesis and oxidation of luminescent silicon nanocrystals from silicon tetrachloride by very high frequency nonthermal plasma , 2011, Nanotechnology.

[9]  Gavin Conibeer,et al.  Silicon nanostructures for third generation photovoltaic solar cells , 2006 .

[10]  Yi Cheng,et al.  High rate fabrication of room temperature red photoluminescent SiC nanocrystals , 2015 .

[11]  Lindsay E. Pell,et al.  Electrochemistry and Electrogenerated Chemiluminescence from Silicon Nanocrystal Quantum Dots , 2002, Science.

[12]  Bong-Guen Hong,et al.  THERMAL PLASMA SYNTHESIS OF NANO-SIZED POWDERS , 2012 .

[13]  D. Lützenkirchen-Hecht,et al.  Production and characterization of nanosized Cu/O/SiC composite particles in a thermal r.f. plasma reactor , 1999 .

[14]  C. Ciobanu,et al.  In situ gas-phase hydrosilylation of plasma-synthesized silicon nanocrystals. , 2011, ACS applied materials & interfaces.

[15]  Takayuki Watanabe,et al.  Two-Directional Nodal Model for Co-Condensation Growth of Multicomponent Nanoparticles in Thermal Plasma Processing , 2009 .

[16]  Anand Prakash,et al.  A Simple Numerical Algorithm and Software for Solution of Nucleation, Surface Growth, and Coagulation Problems , 2003 .

[17]  Yi Cheng,et al.  SiC nanocrystals: high-rate deposition and nano-scale control by thermal plasma , 2014 .

[18]  S. Friedlander Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics , 2000 .

[19]  Bernard Pateyron,et al.  T&TWinner, la chimie et les propriétés de transports en ligne, dans l'intervalle de 300 K à 20 000 K , 2005 .

[20]  Takayuki Watanabe,et al.  Numerical investigation of cooling effect on platinum nanoparticle formation in inductively coupled thermal plasmas , 2008 .

[22]  U. Kortshagen,et al.  High-yield plasma synthesis of luminescent silicon nanocrystals. , 2005, Nano letters.

[23]  D. Bernardi,et al.  Three-dimensional modelling of inductively coupled plasma torches , 2003 .

[24]  A. Murphy,et al.  Thermal plasmas for nanofabrication , 2011 .

[25]  Charge retention in quantized energy levels of nanocrystals , 2006, cond-mat/0605168.

[26]  P. Roth,et al.  High‐temperature kinetics of some Si‐ and Cl‐containing ceramic precursors , 2001 .

[27]  J. H. Thomas,et al.  SF6 plasma etching of silicon nanocrystals , 2009, Nanotechnology.

[28]  J. Meunier,et al.  Carbon Nanoparticle Production by Inductively Coupled Thermal Plasmas: Controlling the Thermal History of Particle Nucleation , 2011 .

[29]  Yi Cheng,et al.  High rate deposition of nanocrystalline silicon by thermal plasma enhanced CVD , 2013 .

[30]  Z. Yu,et al.  Single electron charging in Si nanocrystals embedded in silicon-rich oxide , 2003 .

[31]  A. Gilmutdinov,et al.  Three-dimensional modeling and schlieren visualization of pure Ar plasma flow in inductively coupled plasma torches , 2015 .

[32]  Takayuki Watanabe,et al.  Two-dimensional analysis of nanoparticle formation in induction thermal plasmas with counterflow cooling , 2008 .

[33]  R. J. Ayen,et al.  Temperature Profiles and Energy Balances for an Inductively Coupled Plasma Torch , 1969 .

[34]  A. Vorobev,et al.  A Co-Condensation Model for In-Flight Synthesis of Metal-Carbide Nanoparticles in Thermal Plasma Jet , 2008 .

[35]  D. Bernardi,et al.  Comparison of different techniques for the FLUENT$^{\copyright}$-based treatment of the electromagnetic field in inductively coupled plasma torches , 2003 .

[36]  Shaoqing Xiao,et al.  Highly Efficient Silicon Nanoarray Solar Cells by a Single‐Step Plasma‐Based Process , 2011 .

[37]  G. Guillot,et al.  Optical properties of silicon nanocrystal LEDs , 2003 .

[38]  Tengfei Cao,et al.  Preparation of few-layer graphene nanosheets by radio-frequency induction thermal plasma , 2015 .

[39]  V. Colombo,et al.  A two-dimensional nodal model with turbulent effects for the synthesis of Si nano-particles by inductively coupled thermal plasmas , 2012 .

[40]  S. Orszag,et al.  Development of turbulence models for shear flows by a double expansion technique , 1992 .

[41]  P. Proulx,et al.  Production of Nanoparticles in Thermal Plasmas: A Model Including Evaporation, Nucleation, Condensation, and Fractal Aggregation , 2008 .

[42]  Masaya Shigeta,et al.  Growth model of binary alloy nanopowders for thermal plasma synthesis , 2010 .

[43]  K. Zaghib,et al.  Synthesis of silicon nanowires from carbothermic reduction of silica fume in RF thermal plasma , 2014 .

[44]  V. Colombo,et al.  Evaluation of precursor evaporation in Si nanoparticle synthesis by inductively coupled thermal plasmas , 2013 .

[45]  K. Ostrikov,et al.  Rapid, low-temperature synthesis of nc-Si in high-density, non-equilibrium plasmas : enabling nanocrystallinity at very low hydrogen dilution , 2009 .

[46]  Y. Poissant,et al.  Plasma production of nanocrystalline silicon particles and polymorphous silicon thin films for large-area electronic devices , 2002 .

[47]  Jhuma Gope,et al.  High-pressure condition of SiH4+Ar+H2 plasma for deposition of hydrogenated nanocrystalline silicon film , 2008 .

[48]  A. Itoh,et al.  Fabrication of Nanocrystalline Silicon with Small Spread of Particle Size by Pulsed Gas Plasma , 1997 .

[49]  I. Doğan,et al.  Nucleation of silicon nanocrystals in a remote plasma without subsequent coagulation , 2014 .

[50]  Hansu Kim,et al.  Dual-Size Silicon Nanocrystal-Embedded SiO(x) Nanocomposite as a High-Capacity Lithium Storage Material. , 2015, ACS nano.

[51]  James R McDonough,et al.  Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes. , 2011, Chemical communications.

[52]  B. Goortani,et al.  Controlling nanostructure in thermal plasma processing: Moving from highly aggregated porous structure to spherical silica nanoparticles , 2007 .

[53]  Mark T. Swihart,et al.  THERMOCHEMISTRY AND THERMAL DECOMPOSITION OF THE CHLORINATED DISILANES (SI2HNCL6-N, N = 0-6) STUDIED BY AB INITIO MOLECULAR ORBITAL METHODS , 1997 .

[54]  Peter H. McMurry,et al.  Time-dependent aerosol models and homogeneous nucleation rates , 1990 .

[55]  I. Doğan,et al.  Improved size distribution control of silicon nanocrystals in a spatially confined remote plasma , 2015 .