[Abdominal radiology in oncology: The new trends in computed tomography and magnetic resonance imaging].

Paper gives a review of recent technical innovations in computed tomography (CT) and magnetic resonance imaging (MRI) that could be applied in abdominal oncology. Perfusion and dualenergy CT gives new opportunities for tissue characterization. Interactive reconstruction algorythms decrease radiation exposure to patients. Abdominal MRI has some important advantages over CT in detection and staging of abdominal malignancies. Nowadays standard MR protocols include DWI and dynamic 3D sequences with extracellular or liver-specific contrast media. Latest developments in MRI technology could expand its diag- nostic value in abdominal oncology even further.

[1]  M. Reiser,et al.  Improved Detection of Hypervascular Liver Lesions With CAIPIRINHA–Dixon–TWIST–Volume-Interpolated Breath-Hold Examination , 2015, Investigative radiology.

[2]  S. Schoenberg,et al.  CAIPIRINHA-Dixon-TWIST (CDT)–Volume-Interpolated Breath-Hold Examination (VIBE): A New Technique for Fast Time-Resolved Dynamic 3-Dimensional Imaging of the Abdomen With High Spatial Resolution , 2013, Investigative radiology.

[3]  M. Haider,et al.  Blood oxygen level‐dependent liver MRI: Can It predict microvascular invasion in HCC? , 2013, Journal of magnetic resonance imaging : JMRI.

[4]  Jiani Hu,et al.  Preoperatively evaluating the correlation between pathological grades and blood oxygenation level-dependent MRI in clear cell renal cell carcinomas. , 2013, Academic radiology.

[5]  J. Wang,et al.  Characterizing hepatocellular carcinoma using multi-breath-hold two-dimensional susceptibility-weighted imaging: comparison to conventional liver MRI. , 2012, Clinical radiology.

[6]  Bachir Taouli,et al.  Diffusion-weighted MR imaging for liver lesion characterization: a critical look. , 2012, Radiology.

[7]  B. Choi,et al.  Liver metastases on quantitative color mapping of the arterial enhancement fraction from multiphasic CT scans: evaluation of the hemodynamic features and correlation with the chemotherapy response. , 2011, European journal of radiology.

[8]  B. Choi,et al.  Quantitative color mapping of the arterial enhancement fraction in patients with diffuse liver disease. , 2011, AJR. American journal of roentgenology.

[9]  Brian M Dale,et al.  Free-breathing 3D T1-weighted gradient-echo sequence with radial data sampling in abdominal MRI: preliminary observations. , 2011, AJR. American journal of roentgenology.

[10]  Jiani Hu,et al.  Improving detection of siderotic nodules in cirrhotic liver with a multi‐breath‐hold susceptibility‐weighted imaging technique , 2011, Journal of magnetic resonance imaging : JMRI.

[11]  R. Günther,et al.  Volumetric arterial enhancement fraction predicts tumor recurrence after hepatic radiofrequency ablation of liver metastases: initial results. , 2011, AJR. American journal of roentgenology.

[12]  A. Qayyum Diffusion-weighted imaging in the abdomen and pelvis: concepts and applications. , 2009, Radiographics : a review publication of the Radiological Society of North America, Inc.

[13]  Ernst Klotz,et al.  Quantitative CT color mapping of the arterial enhancement fraction of the liver to detect hepatocellular carcinoma. , 2009, Radiology.

[14]  E. Haacke,et al.  Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 1 , 2008, American Journal of Neuroradiology.

[15]  R. Ehman,et al.  MR elastography of liver tumors: preliminary results. , 2008, AJR. American journal of roentgenology.

[16]  Willi A. Kalender,et al.  Reduction of dose to the female breast in thoracic CT: a comparison of standard-protocol, bismuth-shielded, partial and tube-current-modulated CT examinations , 2008, European Radiology.

[17]  Bernard Gallez,et al.  Current Issues in the Utility of Blood Oxygen Level Dependent MRI for the Assessment of Modulations in Tumor Oxygenation , 2005 .

[18]  T. L. Davis,et al.  Mr perfusion studies with t1‐weighted echo planar imaging , 1995, Magnetic resonance in medicine.

[19]  A. Manduca,et al.  Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. , 1995, Science.

[20]  Seong-Gi Kim Quantification of relative cerebral blood flow change by flow‐sensitive alternating inversion recovery (FAIR) technique: Application to functional mapping , 1995, Magnetic resonance in medicine.

[21]  С. В. Автушко,et al.  Опыт применения гепатоспецифического контрастного средства примовист (гадоксетовая кислота) в дифференциальной диагностике очаговой патологии печени , 2015 .

[22]  L. Marciani,et al.  Whole body magnetic resonance imaging (MRI) , 2014 .

[23]  Daniel K. Sodickson,et al.  Improving the Robustness of Clinical T 1-Weighted MRI Using Radial VIBE , 2013 .

[24]  T. Heye Liver Imaging Today , 2013 .

[25]  B. Choi,et al.  CT color mapping of the arterial enhancement fraction of VX2 carcinoma implanted in rabbit liver: comparison with perfusion CT. , 2011, AJR. American journal of roentgenology.

[26]  B. Taouli,et al.  Diffusion-weighted MR imaging of the liver. , 2010, Radiology.