Status report on Corsica modeling for current drive scenario development

This milestone report covers the progress and status of Corsica modeling for DIII-D experiments over the past year, since our previous report in September, 1995. During this time, we have concentrated on improvements to the code in support of our ability to do self-consistent, predictive modeling of DIII-D discharges. Our interest is in obtaining a tool, benchmarked with experimental data, for developing advanced tokamak operations scenarios including simulation and analysis of high performance negative central shear (NCS) discharges and control of the current profile evolution. Our major focus has been on installing and improving the neutral beam current drive mode in Corsica; this element is critical to modeling the evolution of DIII-D discharges. The NFREYA neutral beam deposition code was installed (starting with a version consistent with GA`s ONETWO code) and the capability for following particle orbits, including the effects of drifts, was added for determining the current driven by neutral beam -injection. In addition, improved methods for more easily integrating experimental profile measurements into the code operation and for calculating Z{sub eff} either from models or from impurity density measurements have been added. We have recently begun to turn on various transport models in our simulation of discharge evolution. We have concentrated on the NCS configuration and have simulated the evolution of two different high neutron reactivity discharges; an NCS discharge with L-mode edge and a single- null, weak NCS discharge from the JET/ITER/DIII-D equivalent shape experiments. Corsica simulation results for these discharges were presented at the EPS meeting in Kiev, Ukraine in June, 1996.