Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles.

[1]  D. Warheit,et al.  Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. , 2007, Nano letters.

[2]  Pratim Biswas,et al.  Assessing the risks of manufactured nanomaterials. , 2006, Environmental science & technology.

[3]  Feng Zhao,et al.  Acute toxicological effects of copper nanoparticles in vivo. , 2006, Toxicology letters.

[4]  Meng Wang,et al.  Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. , 2006, Toxicology letters.

[5]  G. Oberdörster,et al.  Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles , 2005, Environmental health perspectives.

[6]  P. Hoet,et al.  Nanoparticles – known and unknown health risks , 2004, Journal of nanobiotechnology.

[7]  M. L’Abbé,et al.  Maintaining copper homeostasis: regulation of copper-trafficking proteins in response to copper deficiency or overload. , 2004, The Journal of nutritional biochemistry.

[8]  J. James,et al.  Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. , 2003, Toxicological sciences : an official journal of the Society of Toxicology.

[9]  C. Wijmenga,et al.  The Copper Toxicosis Gene Product Murr1 Directly Interacts with the Wilson Disease Protein* , 2003, Journal of Biological Chemistry.

[10]  A. Williams,et al.  Assessing and interpreting arterial blood gases and acid-base balance , 1998, BMJ.

[11]  J. Turnlund Human whole-body copper metabolism. , 1998, The American journal of clinical nutrition.

[12]  I. Bremner Manifestations of copper excess. , 1998, The American journal of clinical nutrition.

[13]  G L Ackerman,et al.  Metabolic alkalosis. , 1976, The Journal of the Arkansas Medical Society.