On numerical modeling of animal swimming and flight

Aquatic and aerial animals have developed their superior and complete mechanisms of swimming and flight. These mechanisms bring excellent locomotion performances to natural creatures, including high efficiency, long endurance ability, high maneuverability and low noise, and can potentially provide inspiration for the design of the man-made vehicles. As an efficient research approach, numerical modeling becomes more and more important in studying the mechanisms of swimming and flight. This review is focused on assessing the recent progress in numerical techniques of solving animal swimming and flight problems. According to the complexity of the problems considered, numerical studies are classified into five stages, of which the main characteristics and the numerical strategies are described and discussed. In addition, the body-conformal mesh, Cartesian-mesh, overset-grid, and meshfree methods are briefly introduced. Finally, several open issues in numerical modeling in this field are highlighted.

[1]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[2]  Tayfun E. Tezduyar,et al.  PARALLEL COMPUTATION OF INCOMPRESSIBLE FLOWS WITH COMPLEX GEOMETRIES , 1997 .

[3]  M. Triantafyllou,et al.  Optimal Thrust Development in Oscillating Foils with Application to Fish Propulsion , 1993 .

[4]  P. Koumoutsakos,et al.  Optimal shapes for anguilliform swimmers at intermediate Reynolds numbers , 2013, Journal of Fluid Mechanics.

[5]  Yuri Bazilevs,et al.  CHALLENGES AND DIRECTIONS IN COMPUTATIONAL FLUID–STRUCTURE INTERACTION , 2013 .

[6]  Yong-Liang Yu,et al.  Flow control by means of a traveling curvature wave in fishlike escape responses. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Jung Hee Seo,et al.  A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations , 2011, J. Comput. Phys..

[8]  Jiezhi Wu,et al.  Vorticity and Vortex Dynamics , 2006 .

[9]  W. Shyy,et al.  Aerodynamics of Low Reynolds Number Flyers , 2007 .

[10]  Xi-Yun Lu,et al.  Characteristics of flow over traveling wavy foils in a side-by-side arrangement , 2007 .

[11]  S. Vogel,et al.  Life in Moving Fluids , 2020 .

[12]  T. Gedeon,et al.  Modeling arthropod filiform hair motion using the penalty immersed boundary method. , 2008, Journal of biomechanics.

[13]  Jules B. Kajtar,et al.  On the swimming of fish like bodies near free and fixed boundaries , 2012 .

[14]  T. Y. Wu,et al.  Hydromechanics of swimming propulsion. Part 3. Swimming and optimum movements of slender fish with side fins , 1971, Journal of Fluid Mechanics.

[15]  G. V. Lauder,et al.  Red and white muscle activity and kinematics of the escape response of the bluegill sunfish during swimming , 1993, Journal of Comparative Physiology A.

[16]  C. Eloy Optimal Strouhal number for swimming animals , 2011, 1102.0223.

[17]  Robert W. Blake,et al.  Biofluiddynamics of balistiform and gymnotiform locomotion. Part 1. Biological background, and analysis by elongated-body theory , 1990, Journal of Fluid Mechanics.

[18]  Xi-Yun Lu,et al.  Vortex formation and force characteristics of a foil in the wake of a circular cylinder , 2004 .

[19]  Z. Feng,et al.  Proteus: a direct forcing method in the simulations of particulate flows , 2005 .

[20]  A K Soh,et al.  Experimental studies of the material properties of the forewing of cicada (Homóptera, Cicàdidae) , 2004, Journal of Experimental Biology.

[21]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[22]  K. Kawachi,et al.  A Numerical Study of Insect Flight , 1998 .

[23]  Tayfun E. Tezduyar,et al.  Simulation of multiple spheres falling in a liquid-filled tube , 1996 .

[24]  B. Shi,et al.  Discrete lattice effects on the forcing term in the lattice Boltzmann method. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[26]  M. Dickinson,et al.  Muscle efficiency and elastic storage in the flight motor of Drosophila. , 1995, Science.

[27]  G. Hou,et al.  Numerical Methods for Fluid-Structure Interaction — A Review , 2012 .

[28]  Christopher Koehler,et al.  3D reconstruction and analysis of wing deformation in free-flying dragonflies , 2012, Journal of Experimental Biology.

[29]  Kenji Takizawa,et al.  Computer modeling techniques for flapping-wing aerodynamics of a locust , 2013 .

[30]  Sheng Xu,et al.  A boundary condition capturing immersed interface method for 3D rigid objects in a flow , 2011, J. Comput. Phys..

[31]  M. Dickinson,et al.  Spanwise flow and the attachment of the leading-edge vortex on insect wings , 2001, Nature.

[32]  Tyson L Hedrick,et al.  Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems , 2008, Bioinspiration & biomimetics.

[33]  Jun Zhang,et al.  Heavy flags undergo spontaneous oscillations in flowing water. , 2005, Physical review letters.

[34]  Steven Deutsch,et al.  Combined polymer and microbubble drag reduction on a large flat plate , 2006, Journal of Fluid Mechanics.

[35]  John Young,et al.  Flapping Wing Aerodynamics: Progress and Challenges , 2008 .

[36]  Rajat Mittal,et al.  A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries , 2008, J. Comput. Phys..

[37]  J. L. Nayler Mathematical Biofluiddynamics. Sir James Lighthill. Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia. 281 pp. Illustrated. , 1976, The Aeronautical Journal (1968).

[38]  Toshiyuki Nakata,et al.  Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach , 2012, Proceedings of the Royal Society B: Biological Sciences.

[39]  X.-Y. Lu,et al.  Propulsive performance and vortex shedding of a foil in flapping flight , 2003 .

[40]  Zi-Niu Wu,et al.  Lift force reduction due to body image of vortex for a hovering flight model , 2012, Journal of Fluid Mechanics.

[41]  Michael L. Accorsi,et al.  Parachute fluid-structure interactions: 3-D computation , 2000 .

[42]  Rainald Löhner,et al.  Fluid dynamics of flapping aquatic flight in the bird wrasse: three-dimensional unsteady computations with fin deformation. , 2002, The Journal of experimental biology.

[43]  Paolo Blondeaux,et al.  Propulsive efficiency of oscillating foils , 2004 .

[44]  Paul W Cleary,et al.  Simulations of dolphin kick swimming using smoothed particle hydrodynamics. , 2012, Human movement science.

[45]  Haibo Dong,et al.  A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight , 2008, Bioinspiration & biomimetics.

[46]  Timothy J. Baker,et al.  Three dimensional mesh generation by triangulation of arbitrary point sets , 1987 .

[47]  Takeshi Sakata Multi-Body Flow Field Calculations with Overlapping-Mesh Method , 1989 .

[48]  George V Lauder,et al.  Advances in comparative physiology from high-speed imaging of animal and fluid motion. , 2008, Annual review of physiology.

[49]  M. Lighthill Note on the swimming of slender fish , 1960, Journal of Fluid Mechanics.

[50]  S. Alben,et al.  Coherent locomotion as an attracting state for a free flapping body. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Tayfun E. Tezduyar,et al.  Methods for 3D computation of fluid-object interactions in spatially periodic flows , 2001 .

[52]  Peter Hansbo,et al.  A variable diffusion method for mesh smoothing , 2003 .

[53]  Ming-Chih Lai,et al.  Simulating the dynamics of inextensible vesicles by the penalty immersed boundary method , 2010, J. Comput. Phys..

[54]  C. Ellington The Aerodynamics of Hovering Insect Flight. I. The Quasi-Steady Analysis , 1984 .

[55]  G. Lauder,et al.  Disentangling the functional roles of morphology and motion in the swimming of fish. , 2010, Integrative and comparative biology.

[56]  Jun Zhang,et al.  Flapping and Bending Bodies Interacting with Fluid Flows , 2011 .

[57]  Tayfun E. Tezduyar,et al.  Space-Time Computational Techniques for the Aerodynamics of Flapping Wings , 2012 .

[58]  John Young,et al.  Oscillation Frequency and Amplitude Effects on the Wake of a Plunging Airfoil , 2004 .

[59]  Jeff D. Eldredge,et al.  Numerical simulation of the fluid dynamics of 2D rigid body motion with the vortex particle method , 2007, J. Comput. Phys..

[60]  Samson Cheung,et al.  Use of computational fluid dynamics to study forces exerted on prey by aquatic suction feeders , 2010, Journal of The Royal Society Interface.

[61]  Chang Shu,et al.  Simulation of fish swimming and manoeuvring by an SVD-GFD method on a hybrid meshfree-Cartesian grid , 2010 .

[62]  B. Balachandran,et al.  Influence of flexibility on the aerodynamic performance of a hovering wing , 2009, Journal of Experimental Biology.

[63]  T. Williams,et al.  Nonlinear Muscles, Passive Viscoelasticity and Body Taper Conspire To Create Neuromechanical Phase Lags in Anguilliform Swimmers , 2008, PLoS Comput. Biol..

[64]  Ruo Li,et al.  Moving Mesh Finite Element Methods for the Incompressible Navier-Stokes Equations , 2005, SIAM J. Sci. Comput..

[65]  Hu Dai,et al.  Toward high-fidelity modeling of the fluid-structure interaction for insect wings , 2012 .

[66]  Peter C. Wainwright,et al.  The benefits of planar circular mouths on suction feeding performance , 2012, Journal of The Royal Society Interface.

[67]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity , 2012 .

[68]  Qiang Zhu,et al.  Modeling the capacity of a novel flow-energy harvester , 2009 .

[69]  Luoding Zhu,et al.  An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments , 2011, J. Comput. Phys..

[70]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[71]  G. Helfman,et al.  The Diversity of Fishes: Biology, Evolution, and Ecology , 2009 .

[72]  Bing-Gang Tong,et al.  Analysis of swimming three-dimensional waving plates , 1991, Journal of Fluid Mechanics.

[73]  J. Vadyak,et al.  A grid interfacing zonal algorithm for three-dimensional transonic flows about aircraft configurations , 1982 .

[74]  Z. J. Wang Vortex shedding and frequency selection in flapping flight , 2000, Journal of Fluid Mechanics.

[75]  Z. Jane Wang,et al.  DISSECTING INSECT FLIGHT , 2005 .

[76]  R J Full,et al.  How animals move: an integrative view. , 2000, Science.

[77]  Mostafa A. M. Abdeen,et al.  ANN model for predicting the impact of submerged aquatic weeds existence on the hydraulic performance of branched open channel system accompanied by water structures , 2007 .

[78]  J. Monaghan,et al.  On the dynamics of swimming linked bodies , 2009, 0911.2050.

[79]  Xi-Yun Lu,et al.  Dynamic responses of a two-dimensional flapping foil motion , 2006 .

[80]  Yi Sui,et al.  A hybrid method to study flow-induced deformation of three-dimensional capsules , 2008, J. Comput. Phys..

[81]  Mao Sun,et al.  Effects of wing deformation on aerodynamic forces in hovering hoverflies , 2010, Journal of Experimental Biology.

[82]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[83]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[84]  R. Mittal,et al.  Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils , 2006, Journal of Fluid Mechanics.

[85]  Tayfun E. Tezduyar,et al.  PARALLEL FINITE ELEMENT SIMULATION OF 3D INCOMPRESSIBLE FLOWS: FLUID-STRUCTURE INTERACTIONS , 1995 .

[86]  M. Berger ON CONSERVATION AT GRID INTERFACES. , 1987 .

[87]  Neelesh A. Patankar,et al.  A new mathematical formulation and fast algorithm for fully resolved simulation of self-propulsion , 2009, J. Comput. Phys..

[88]  Joseph C. S. Lai,et al.  On the aerodynamic forces of a plunging airfoil , 2007 .

[89]  Charles S. Peskin,et al.  Flow patterns around heart valves: a digital computer method for solving the equations of motion , 1973 .

[90]  George V Lauder,et al.  The C-start escape response of Polypterus senegalus: bilateral muscle activity and variation during stage 1 and 2. , 2002, The Journal of experimental biology.

[91]  E. G. Drucker,et al.  Wake dynamics and fluid forces of turning maneuvers in sunfish. , 2001, The Journal of experimental biology.

[92]  R. Ramamurti,et al.  A three-dimensional computational study of the aerodynamic mechanisms of insect flight. , 2002, The Journal of experimental biology.

[93]  G. Lauder,et al.  Passive and Active Flow Control by Swimming Fishes and Mammals , 2006 .

[94]  Keiji Kawachi,et al.  Regular Article: A Numerical Study of Undulatory Swimming , 1999 .

[95]  Yuri Bazilevs,et al.  Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling , 2012 .

[96]  M B Foreman,et al.  The direction change concept for reticulospinal control of goldfish escape , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[97]  Tayfun E. Tezduyar,et al.  Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces , 2007 .

[98]  Xi-Yun Lu,et al.  Numerical analysis on the propulsive performance and vortex shedding of fish‐like travelling wavy plate , 2005 .

[99]  David L. Marcum,et al.  Efficient Generation of High-Quality Unstructured Surface and Volume Grids , 2001, Engineering with Computers.

[100]  M. Lighthill Hydromechanics of Aquatic Animal Propulsion , 1969 .

[101]  Geoffrey Ingram Taylor,et al.  The action of waving cylindrical tails in propelling microscopic organisms , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[102]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[103]  S. Turek,et al.  Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow , 2006 .

[104]  James F. Doyle Guided Explorations of the Mechanics of Solids and Structures: Vibration of Structures , 2009 .

[105]  Tapan K. Sengupta,et al.  An improved method for calculating flow past flapping and hovering airfoils , 2005 .

[106]  Sanjay P Sane,et al.  The aerodynamics of insect flight , 2003, Journal of Experimental Biology.

[107]  Hu Dai,et al.  Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems , 2014, J. Comput. Phys..

[108]  D. Ishihara,et al.  A two-dimensional computational study on the fluid–structure interaction cause of wing pitch changes in dipteran flapping flight , 2009, Journal of Experimental Biology.

[109]  Luoding Zhu,et al.  Interaction between a flexible filament and a downstream rigid body. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[110]  Michael S. Triantafyllou,et al.  Three-dimensional flow structures and vorticity control in fish-like swimming , 2002, Journal of Fluid Mechanics.

[111]  R J Wootton,et al.  Approaches to the structural modelling of insect wings. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[112]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[113]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a cross parachute: Numerical simulation , 2001 .

[114]  M. Rai A conservative treatment of zonal boundaries for Euler equation calculations , 1986 .

[115]  C. Peskin,et al.  Interaction of two flapping filaments in a flowing soap film , 2003 .

[116]  R. Ramamurti,et al.  A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering , 2007, Journal of Experimental Biology.

[117]  R. Mittal,et al.  Time-Varying Wing-Twist Improves Aerodynamic Efficiency of Forward Flight in Butterflies , 2013, PloS one.

[118]  J. Boyle,et al.  Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches , 2008 .

[119]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[120]  Yongsam Kim,et al.  Penalty immersed boundary method for an elastic boundary with mass , 2007 .

[121]  S. N. Fry,et al.  The Aerodynamics of Free-Flight Maneuvers in Drosophila , 2003, Science.

[122]  Hu Jin-song,et al.  VISCOELASTIC CONSTITUTIVE MODEL RELATED TO DEFORMATION OF INSECT WING UNDER LOADING IN FLAPPING MOTION , 2006 .

[123]  M. Chern,et al.  An immersed boundary method to solve fluid–solid interaction problems , 2009 .

[124]  Akira Azuma,et al.  The Biokinetics of Flying and Swimming , 1992 .

[125]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[126]  Mao Sun,et al.  Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion , 2003, Journal of Experimental Biology.

[127]  Murat Manguoglu,et al.  Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement , 2010 .

[128]  E. Oñate,et al.  A FINITE POINT METHOD IN COMPUTATIONAL MECHANICS. APPLICATIONS TO CONVECTIVE TRANSPORT AND FLUID FLOW , 1996 .

[129]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a parachute crossing the far wake of an aircraft , 2001 .

[130]  M. Triantafyllou,et al.  Hydrodynamics of Fishlike Swimming , 2000 .

[131]  Qiang Zhu,et al.  Optimal frequency for flow energy harvesting of a flapping foil , 2011, Journal of Fluid Mechanics.

[132]  D. Yue,et al.  Flapping dynamics of a flag in a uniform stream , 2007, Journal of Fluid Mechanics.

[133]  G. Taylor Analysis of the swimming of microscopic organisms , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[134]  Andrew A. Biewener,et al.  In vivo strain in the humerus of pigeons (Columba livia) during flight , 1995 .

[135]  Rainald Löhner,et al.  Three-dimensional grid generation by the advancing front method , 1988 .

[136]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics , 2007 .

[137]  Yiannis Ventikos,et al.  Ciliary behaviour and mechano-transduction in the embryonic node: computational testing of hypotheses. , 2011, Medical engineering & physics.

[138]  Tayfun E. Tezduyar,et al.  Computational Methods for Parachute Fluid–Structure Interactions , 2012 .

[139]  Christophe Eloy,et al.  Optimisation of two-dimensional undulatory swimming at high Reynolds number , 2011 .

[140]  Carlos E. S. Cesnik,et al.  Effects of flexibility on the aerodynamic performance of flapping wings , 2011, Journal of Fluid Mechanics.

[141]  Paolo Blondeaux,et al.  Numerical experiments on the transient motions of a flapping foil , 2009 .

[142]  M. Dickinson,et al.  Wing rotation and the aerodynamic basis of insect flight. , 1999, Science.

[143]  M. Triantafyllou,et al.  Numerical experiments on flapping foils mimicking fish-like locomotion , 2005 .

[144]  R. Mittal,et al.  Benchmarking a Coupled Immersed-Boundary-Finite-Element Solver for Large-Scale Flow-Induced Deformation , 2012 .

[145]  S. Childress Mechanics of swimming and flying: Frontmatter , 1977 .

[146]  C. Ellington The Aerodynamics of Hovering Insect Flight. II. Morphological Parameters , 1984 .

[147]  Mao Sun,et al.  A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering , 2004, Journal of Experimental Biology.

[148]  H. Sung,et al.  An immersed boundary method for fluid–flexible structure interaction , 2009 .

[149]  Cyrus K. Aidun,et al.  Lattice-Boltzmann Method for Complex Flows , 2010 .

[150]  Yu Yongliang,et al.  Two-Dimensional Self-Propelled Fish Motion in Medium: An Integrated Method for Deforming Body Dynamics and Unsteady Fluid Dynamics , 2008 .

[151]  Marek Behr,et al.  The Shear-Slip Mesh Update Method , 1999 .

[152]  S. Mittal,et al.  Massively parallel finite element computation of incompressible flows involving fluid-body interactions , 1994 .

[153]  Karl Gustafson,et al.  Computation of dragonfly aerodynamics , 1991 .

[154]  J. Benek,et al.  A flexible grid embedding technique with application to the Euler equations , 1983 .

[155]  E. G. Drucker,et al.  Locomotor function of the dorsal fin in rainbow trout: kinematic patterns and hydrodynamic forces , 2005, Journal of Experimental Biology.

[156]  T. Daniel,et al.  Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta , 2003, Journal of Experimental Biology.

[157]  D. Shyam Sundar,et al.  A three‐dimensional hybrid meshfree‐Cartesian scheme for fluid–body interaction , 2011 .

[158]  Wei Shyy,et al.  Simulations of dynamics of plunge and pitch of a three-dimensional flexible wing in a low Reynolds number flow , 2010 .

[159]  Joseph C. S. Lai,et al.  Reynolds number, thickness and camber effects on flapping airfoil propulsion , 2011 .

[160]  Ryo Torii,et al.  Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms , 2010 .

[161]  Y. Bae,et al.  Aerodynamic sound generation of flapping wing. , 2008, The Journal of the Acoustical Society of America.

[162]  Chang Shua,et al.  Numerical simulation of fish motion by using lattice Boltzmann-Immersed Boundary Velocity Correction Method , 2007 .

[163]  Qiang Zhu,et al.  Numerical Simulation of a Flapping Foil with Chordwise or Spanwise Flexibility , 2007 .

[164]  Xi-Yun Lu,et al.  Unsteady fluid-dynamic force solely in terms of control-surface integral , 2005 .

[165]  Tayfun E. Tezduyar,et al.  METHODS FOR FSI MODELING OF SPACECRAFT PARACHUTE DYNAMICS AND COVER SEPARATION , 2013 .

[166]  Angelo Iollo,et al.  Modeling and simulation of fish-like swimming , 2010, J. Comput. Phys..

[167]  Luoding Zhu,et al.  Coupling modes of three filaments in side-by-side arrangement , 2011 .

[168]  Hu Dai,et al.  Computational Fluid–Structure Interaction for Biological and Biomedical Flows , 2013 .

[169]  Peter Aerts,et al.  Extremely fast prey capture in pipefish is powered by elastic recoil , 2008, Journal of The Royal Society Interface.

[170]  Toshiyuki Nakata,et al.  A fluid-structure interaction model of insect flight with flexible wings , 2012, J. Comput. Phys..

[171]  Sunetra Sarkar,et al.  Study of asymmetric hovering in flapping flight , 2013 .

[172]  Joseph C. S. Lai,et al.  Mechanisms Influencing the Efficiency of Oscillating Airfoil Propulsion , 2007 .

[173]  Max F. Platzer,et al.  Numerical Simulation of Fully Passive Flapping Foil Power Generation , 2013 .

[174]  B. U. Felderhof The swimming of animalcules , 2006 .

[175]  Tayfun E. Tezduyar,et al.  SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS , 2012 .

[176]  Christopher Koehler,et al.  An Integrated Analysis of a Dragonfly in Free Flight , 2010 .

[177]  Z. J. Wang Two dimensional mechanism for insect hovering , 2000 .

[178]  Rajat Mittal,et al.  Toward A Simulation-Based Tool for the Treatment of Vocal Fold Paralysis , 2011, Front. Physio..

[179]  Z. J. Wang,et al.  A Fully Conservative Interface Algorithm for Overlapped Grids , 1995 .

[180]  Jun Zhang,et al.  Surprising behaviors in flapping locomotion with passive pitching , 2010 .

[181]  Tayfun E. Tezduyar,et al.  Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust , 2012 .

[182]  Q. Qian,et al.  Numerical method for optimum motion of undulatory swimming plate in fluid flow , 2011 .

[183]  M. Lighthill Large-amplitude elongated-body theory of fish locomotion , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[184]  T. Daniel,et al.  The Journal of Experimental Biology 206, 2979-2987 © 2003 The Company of Biologists Ltd , 2022 .

[185]  F. Tian,et al.  Red blood cell partitioning and blood flux redistribution in microvascular bifurcation , 2012 .

[186]  Kenji Takizawa,et al.  Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent , 2012, Computational Mechanics.

[187]  Karl Gustafson,et al.  Biological dynamical subsystems of hovering flight , 1996 .

[188]  Petros Koumoutsakos,et al.  C-start: optimal start of larval fish , 2012, Journal of Fluid Mechanics.

[189]  M. Lighthill On sound generated aerodynamically I. General theory , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[190]  T. Y. Wu,et al.  Swimming of a waving plate , 1961, Journal of Fluid Mechanics.

[191]  M. Triantafyllou,et al.  Wake mechanics for thrust generation in oscillating foils , 1991 .

[192]  Jung Hee Seo,et al.  Linearized perturbed compressible equations for low Mach number aeroacoustics , 2006, J. Comput. Phys..

[193]  I. Borazjani,et al.  Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes , 2008, Journal of Experimental Biology.

[194]  H. Sung,et al.  Three-dimensional simulation of a flapping flag in a uniform flow , 2010, Journal of Fluid Mechanics.

[195]  George V Lauder,et al.  The hydrodynamic function of shark skin and two biomimetic applications , 2012, Journal of Experimental Biology.

[196]  Tayfun E. Tezduyar,et al.  Parallel finite element simulation of large ram-air parachutes , 1997 .

[197]  G. Lauder,et al.  Hydrodynamics of a biologically inspired tandem flapping foil configuration , 2007 .

[198]  Joel Guerrero,et al.  Wake Signature and Strouhal Number Dependence of Finite-Span Flapping Wings , 2010 .

[199]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[200]  M. Lighthill Aquatic animal propulsion of high hydromechanical efficiency , 1970, Journal of Fluid Mechanics.

[201]  F. Tian,et al.  AN EFFICIENT RED BLOOD CELL MODEL IN THE FRAME OF IB-LBM AND ITS APPLICATION , 2013 .

[202]  Qiang Zhu,et al.  Propulsion performance of a skeleton-strengthened fin , 2008, Journal of Experimental Biology.

[203]  Xi-Yun Lu,et al.  Locomotion of a passively flapping flat plate , 2010, Journal of Fluid Mechanics.

[204]  Adrian L. R. Thomas,et al.  Leading-edge vortices in insect flight , 1996, Nature.

[205]  Xi-yun Lu,et al.  Onset of instability of a flag in uniform flow , 2012 .

[206]  Z. J. Cendes,et al.  Adaptive finite element mesh generation using the Delaunay algorithm , 1982 .

[207]  G. Lauder,et al.  Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: three-dimensional kinematics during propulsion and maneuvering , 2005, Journal of Experimental Biology.

[208]  Jialei Song,et al.  Force production and asymmetric deformation of a flexible flapping wing in forward flight , 2013 .

[209]  Joseph C. S. Lai,et al.  Vortex lock-in phenomenon in the wake of a plunging airfoil , 2007 .

[210]  T. Tezduyar,et al.  A parallel 3D computational method for fluid-structure interactions in parachute systems , 2000 .

[211]  Murat Manguoglu,et al.  A parallel sparse algorithm targeting arterial fluid mechanics computations , 2011 .

[212]  Robert T. Jones,et al.  Properties of low-aspect-ratio pointed wings at speeds below and above the speed of sound , 1946 .

[213]  T. Daniel,et al.  The Journal of Experimental Biology 206, 2989-2997 © 2003 The Company of Biologists Ltd , 2003 .

[214]  Li-Shi Luo,et al.  Some Progress in Lattice Boltzmann Method. Part I. Nonuniform Mesh Grids , 1996 .

[215]  M. Lighthill On the Weis-Fogh mechanism of lift generation , 1973, Journal of Fluid Mechanics.

[216]  Jun Zhang,et al.  Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind , 2000, Nature.

[217]  Hao Liu,et al.  Integrated modeling of insect flight: From morphology, kinematics to aerodynamics , 2009, J. Comput. Phys..

[218]  Xiyun Lu,et al.  Numerical simulation of drop Marangoni migration under microgravity , 2004 .

[219]  J. F. Doyle,et al.  Dynamic pitching of an elastic rectangular wing in hovering motion , 2012, Journal of Fluid Mechanics.

[220]  C. Peskin,et al.  Simulation of a Flapping Flexible Filament in a Flowing Soap Film by the Immersed Boundary Method , 2002 .

[221]  Ted Belytschko,et al.  ON THE COMPLETENESS OF MESHFREE PARTICLE METHODS , 1998 .

[222]  Tayfun E. Tezduyar,et al.  Shear-Slip Mesh Update in 3D Computation of Complex Flow Problems with Rotating Mechanical Components , 2001 .

[223]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[224]  D. Eldredge,et al.  Efficient Tools for the Simulation of Flapping Wing Flows , 2005 .

[225]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[226]  T. Daniel,et al.  Shape, flapping and flexion: wing and fin design for forward flight. , 2001, The Journal of experimental biology.

[227]  I. Borazjani,et al.  On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming , 2010, Journal of Experimental Biology.

[228]  T. Y. Wu On theoretical modeling of aquatic and aerial animal locomotion , 2002 .

[229]  T. Tezduyar,et al.  A comparative study based on patient-specific fluid-structure interaction modeling of cerebral aneurysms , 2012 .

[230]  Mao Sun,et al.  Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. , 2002, The Journal of experimental biology.

[231]  Xiaolei Yang,et al.  A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations , 2009, J. Comput. Phys..

[232]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[233]  Tayfun E. Tezduyar,et al.  Automatic mesh update with the solid-extension mesh moving technique , 2004 .

[234]  S. Biringen,et al.  Numerical Simulation of a Cylinder in Uniform Flow , 1996 .

[235]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[236]  Petros Koumoutsakos,et al.  An immersed boundary method for smoothed particle hydrodynamics of self-propelled swimmers , 2008, J. Comput. Phys..

[237]  Adrian L. R. Thomas,et al.  Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency , 2003, Nature.

[238]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[239]  Tayfun E. Tezduyar,et al.  Fluid-Structure Interaction Modeling of Spacecraft Parachutes for Simulation-Based Design , 2012 .

[240]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .

[241]  R. McNeill Alexander,et al.  Principles of Animal Locomotion , 2002 .

[242]  Tayfun E. Tezduyar,et al.  Multiscale sequentially-coupled arterial FSI technique , 2010 .

[243]  Tayfun E. Tezduyar,et al.  Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms , 2013 .

[244]  Ellington,et al.  A computational fluid dynamic study of hawkmoth hovering , 1998, The Journal of experimental biology.

[245]  Qiang Zhu,et al.  Energy harvesting through flow-induced oscillations of a foil , 2009 .

[246]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[247]  C. Ellington The Aerodynamics of Hovering Insect Flight. III. Kinematics , 1984 .

[248]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[249]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[250]  Haoxiang Luo,et al.  Effect of wing inertia on hovering performance of flexible flapping wings , 2010 .

[251]  Kamran Mohseni,et al.  An arbitrary Lagrangian-Eulerian formulation for the numerical simulation of flow patterns generated by the hydromedusa Aequorea victoria , 2009, J. Comput. Phys..

[252]  George V. Lauder,et al.  Hydrodynamics of Undulatory Propulsion , 2005 .

[253]  Richard Benney,et al.  Computational methods for modeling parachute systems , 2003, Comput. Sci. Eng..

[254]  Chang Shu,et al.  A generalized finite-difference (GFD) ALE scheme for incompressible flows around moving solid bodies on hybrid meshfree-Cartesian grids , 2006, J. Comput. Phys..

[255]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[256]  R. Edwards,et al.  The separation vortex in the Weis-Fogh circulation-generation mechanism , 1982, Journal of Fluid Mechanics.

[257]  R. Wootton FUNCTIONAL MORPHOLOGY OF INSECT WINGS , 1992 .

[258]  Z. Feng,et al.  The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems , 2004 .

[259]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[260]  Tayfun E. Tezduyar,et al.  Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions , 2010 .

[261]  Tayfun E. Tezduyar,et al.  Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters , 2011 .

[262]  Tayfun E. Tezduyar,et al.  Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces , 2006 .

[263]  D. Mavriplis An advancing front Delaunay triangulation algorithm designed for robustness , 1993 .

[264]  John Young,et al.  Simulation and Parameter Variation of Flapping-Wing Motion Based on Dragonfly Hovering , 2008 .

[265]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[266]  T. Y. Wu Fish Swimming and Bird/Insect Flight , 2011 .

[267]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of ringsail parachutes , 2008 .

[268]  Tayfun E. Tezduyar,et al.  Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle , 2012 .

[269]  Tayfun E. Tezduyar,et al.  Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods , 2008 .

[270]  George V. Lauder,et al.  Low-dimensional models and performance scaling of a highly deformable fish pectoral fin , 2009, Journal of Fluid Mechanics.

[271]  Paresh Parikh,et al.  Generation of three-dimensional unstructured grids by the advancing-front method , 1988 .

[272]  Z. J. Wang,et al.  Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments , 2004, Journal of Experimental Biology.

[273]  I. Borazjani,et al.  Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes , 2009, Journal of Experimental Biology.

[274]  Hao Liu,et al.  Recent progress in flapping wing aerodynamics and aeroelasticity , 2010 .

[275]  Shizhao Wang,et al.  An immersed boundary method based on discrete stream function formulation for two- and three-dimensional incompressible flows , 2011, J. Comput. Phys..

[276]  Tayfun E. Tezduyar,et al.  Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations , 2006 .

[277]  Kamran Mohseni,et al.  Simulation of flow patterns generated by the hydromedusa Aequorea victoria using an arbitrary Lagrangian–Eulerian formulation , 2009 .

[278]  Joe F. Thompson,et al.  Numerical grid generation: Foundations and applications , 1985 .

[279]  Liu,et al.  A computational fluid dynamics study of tadpole swimming , 1996, The Journal of experimental biology.

[280]  Shiaofen Fang,et al.  An immersed boundary method based on the lattice Boltzmann approach in three dimensions, with application , 2011, Comput. Math. Appl..

[281]  K. Kawachi,et al.  The three-dimensional hydrodynamics of tadpole locomotion. , 1997, The Journal of experimental biology.

[282]  John E. Sader,et al.  Small amplitude oscillations of a flexible thin blade in a viscous fluid: Exact analytical solution , 2006 .

[283]  Tayfun E. Tezduyar,et al.  Advanced mesh generation and update methods for 3D flow simulations , 1999 .

[284]  Yiannis Ventikos,et al.  The active and passive ciliary motion in the embryo node: a computational fluid dynamics model. , 2009, Journal of biomechanics.

[285]  T. Weis-Fogh Quick estimates of flight fitness in hovering animals , 1973 .

[286]  Frédéric Boyer,et al.  Three-dimensional extension of Lighthill's large-amplitude elongated-body theory of fish locomotion , 2011, Journal of Fluid Mechanics.

[287]  G. Taylor Analysis of the swimming of long and narrow animals , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[288]  Gil Iosilevskii,et al.  Aerodynamic trapping effect and its implications for capture of flying insects by carnivorous pitcher plants , 2013 .

[289]  Tayfun E. Tezduyar,et al.  Massively parallel finite element simulation Of compressible and incompressible flows , 1994 .

[290]  Qiang Zhu,et al.  Performance of a wing with nonuniform flexibility in hovering flight , 2013 .

[291]  G. Lauder,et al.  Fish Exploiting Vortices Decrease Muscle Activity , 2003, Science.

[292]  Luoding Zhu Interaction of two tandem deformable bodies in a viscous incompressible flow , 2009, Journal of Fluid Mechanics.

[293]  Chiakuei Peng,et al.  Chern-Simons invariant and conformal embedding of a 3-manifold , 2010 .

[294]  Fotis Sotiropoulos,et al.  An overset-grid method for 3D unsteady incompressible flows , 2003 .

[295]  Joe J. Monaghan,et al.  SPH simulations of swimming linked bodies , 2008, J. Comput. Phys..

[296]  Akira Azuma,et al.  The Biokinetics of Flying and Swimming, Second Edition , 2006 .

[297]  Rolf Rannacher,et al.  Adaptive Finite Element Approximation of Fluid-Structure Interaction Based on an Eulerian Variational Formulation , 2006 .

[298]  Hyung Jin Sung,et al.  An improved penalty immersed boundary method for fluid-flexible body interaction , 2011, J. Comput. Phys..

[299]  B. Yin,et al.  On the numerical oscillation of the direct-forcing immersed-boundary method for moving boundaries , 2012 .

[300]  H. Hertel,et al.  Structure-form-movement , 1966 .

[301]  Qiang Zhu,et al.  Flow-induced vibrations of a deformable ring , 2010, Journal of Fluid Mechanics.

[302]  R. Wootton Invertebrate paraxial locomotory appendages: design, deformation and control. , 1999, The Journal of experimental biology.

[303]  S. Childress,et al.  Transition from ciliary to flapping mode in a swimming mollusc: flapping flight as a bifurcation in ${\hbox{\it Re}}_\omega$ , 2004, Journal of Fluid Mechanics.

[304]  Paul A. Janmey,et al.  Soft biological materials and their impact on cell function. , 2007, Soft matter.

[305]  Luoding Zhu,et al.  A lattice Boltzmann based implicit immersed boundary method for fluid-structure interaction , 2010, Comput. Math. Appl..

[306]  S. Mittal,et al.  A finite element study of incompressible flows past oscillating cylinders and aerofoils , 1992 .

[307]  Haoxiang Luo,et al.  Propulsive performance of a body with a traveling-wave surface. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[308]  Andrew A Biewener,et al.  Morphological and kinematic basis of the hummingbird flight stroke: scaling of flight muscle transmission ratio , 2012, Proceedings of the Royal Society B: Biological Sciences.

[309]  L. Sirovich,et al.  Modeling a no-slip flow boundary with an external force field , 1993 .

[310]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[311]  A. Cohen,et al.  Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming , 2010, Proceedings of the National Academy of Sciences.

[312]  Xie-zhen Yin,et al.  Secondary vortex street in the wake of two tandem circular cylinders at low Reynolds number. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[313]  Ulrike K. Müller Fish 'n Flag , 2003, Science.

[314]  Paul-Louis George,et al.  Delaunay triangulation and meshing : application to finite elements , 1998 .

[315]  Tayfun E. Tezduyar,et al.  3D Simulation of fluid-particle interactions with the number of particles reaching 100 , 1997 .

[316]  Liang Wang,et al.  Where is the rudder of a fish?: the mechanism of swimming and control of self-propelled fish school , 2010 .

[317]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[318]  R. Verzicco,et al.  Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations , 2000 .

[319]  Boqin Xu,et al.  Deformation measurements of dragonfly's wings in free flight by using Windowed Fourier Transform , 2008 .

[320]  Qiang Zhu,et al.  Mode coupling and flow energy harvesting by a flapping foil , 2009 .

[321]  G. He,et al.  Effects of geometric shape on the hydrodynamics of a self-propelled flapping foil , 2009 .

[322]  Tayfun E. Tezduyar,et al.  Flow simulation and high performance computing , 1996 .

[323]  Z. Jane Wang,et al.  An immersed interface method for simulating the interaction of a fluid with moving boundaries , 2006, J. Comput. Phys..

[324]  John Young,et al.  Details of Insect Wing Design and Deformation Enhance Aerodynamic Function and Flight Efficiency , 2009, Science.

[325]  Rajat Mittal,et al.  An immersed-boundary method for flow-structure interaction in biological systems with application to phonation , 2008, J. Comput. Phys..

[326]  Xu Yuan-qing,et al.  IB–LBM simulation of the haemocyte dynamics in a stenotic capillary , 2014, Computer methods in biomechanics and biomedical engineering.

[327]  F.S. Hover,et al.  Review of experimental work in biomimetic foils , 2004, IEEE Journal of Oceanic Engineering.

[328]  H Liu,et al.  Size effects on insect hovering aerodynamics: an integrated computational study , 2009, Bioinspiration & biomimetics.

[329]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[330]  Shizhao Wang,et al.  Numerical Simulation of a Three-Dimensional Fish-like Body Swimming with Finlets , 2012 .

[331]  J. Benek,et al.  A 3-D Chimera Grid Embedding Technique , 1985 .