Applications of the notion of independence to problems of combinatorial analysis

[1]  S. Banach,et al.  Un théorème sur les transformations biunivoques , 1924 .

[2]  P. Hall On Representatives of Subsets , 1935 .

[3]  H. Whitney On the Abstract Properties of Linear Dependence , 1935 .

[4]  R. Rado A THEOREM ON INDEPENDENCE RELATIONS , 1942 .

[5]  M. Hall Distinct representatives of subsets , 1948 .

[6]  R. Rado,et al.  Axiomatic Treatment of Rank in Infinite Sets , 1949, Canadian Journal of Mathematics.

[7]  C. J. Everett,et al.  Representations of Sequences of Sets , 1949 .

[8]  H. E. Vaughan,et al.  The Marriage Problem , 1950 .

[9]  W. H. Gottschalk,et al.  Choice functions and Tychonoff’s theorem , 1951 .

[10]  Henry B. Mann,et al.  Systems of Distinct Representatives , 1953 .

[11]  O. Ore Graphs and matching theorems , 1955 .

[12]  H. Kuhn,et al.  Systems of Distinct Representations and Linear Programming , 1956 .

[13]  A. Tucker,et al.  Linear Inequalities And Related Systems , 1956 .

[14]  Marshall Hall,et al.  An Algorithm for Distinct Representatives , 1956 .

[15]  N. S. Mendelsohn,et al.  Some generalizations of the problem of distinct representatives , 1958 .

[16]  O. Ore Theory of Graphs , 1962 .

[17]  Hazel Perfect,et al.  SYMMETRIZED FORM OF P. HALL'S THEOREM ON DISTINCT REPRESENTATIVES , 1966 .

[18]  Hazel Perfect,et al.  Systems of representatives , 1966 .

[19]  L. Mirsky TRANSVERSALS OF SUBSETS , 1966 .

[20]  Hazel Perfect,et al.  Addendum: An extension of Banach's mapping theorem with applications to problems concerning common representatives , 1966, Mathematical Proceedings of the Cambridge Philosophical Society.