Spin current as a probe of quantum materials

Spin current historically referred to the flow of electrons carrying spin information, in particular since the discovery of giant magnetoresistance in the 1980s. Recently, it has been found that spin current can also be mediated by spin-triplet supercurrent, superconducting quasiparticles, spinons, magnons, spin superfluidity and so on. Here, we review key progress concerning the developing research direction utilizing spin current as a probe of quantum materials. We focus on spin-triplet superconductivity and spin dynamics in the ferromagnet/superconductor heterostructures, quantum spin liquids, magnetic phase transitions, magnon-polarons, magnon-polaritons, magnon Bose–Einstein condensates and spin superfluidity. The unique characteristics of spin current as a probe will be fruitful for future investigation of spin-dependent properties and the identification of new quantum materials. Progress in utilizing spin current as a probe of quantum materials,—including topological insulators, superconductors, spin liquids, magnonic systems and spin superfluidity,—is reviewed.

[1]  A. Fert Nobel Lecture: Origin, development, and future of spintronics , 2008 .

[2]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[3]  K. Kamazawa,et al.  Topological spin excitations in a three-dimensional antiferromagnet , 2017, Nature Physics.

[4]  Lin Zhao,et al.  Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. , 2012, Nature materials.

[5]  Wei Han,et al.  Graphene spintronics. , 2014, Nature nanotechnology.

[6]  T. Nattermann,et al.  Unconventional Superfluidity in Yttrium Iron Garnet Films. , 2016, Physical review letters.

[7]  Albert Fert,et al.  Theory of the perpendicular magnetoresistance in magnetic multilayers. , 1993, Physical review. B, Condensed matter.

[8]  N. Gedik,et al.  Photoemission of quantum materials , 2017, Nature Physics.

[9]  Ronald L. Walsworth,et al.  Control and local measurement of the spin chemical potential in a magnetic insulator , 2016, Science.

[10]  A. Slavin,et al.  Observation of spontaneous coherence in Bose-Einstein condensate of magnons. , 2008, Physical review letters.

[11]  R. Cava,et al.  First observation of Spin-Momentum Helical Locking in Bi2Se3 and Bi2Te3, demonstration of Topological-Order at 300K and a realization of topological-transport-regime , 2010, 1001.1590.

[12]  S. Sikdar,et al.  Fundamentals and applications , 1998 .

[13]  Ludo J. Cornelissen,et al.  Magnon spin transport driven by the magnon chemical potential in a magnetic insulator , 2016, 1604.03706.

[14]  Michel Dyakonov,et al.  Current-induced spin orientation of electrons in semiconductors , 1971 .

[15]  Kathryn Ann Moler,et al.  Imaging quantum materials. , 2017, Nature materials.

[16]  Yoichi Ando,et al.  Spin-electricity conversion induced by spin injection into topological insulators. , 2014, Physical review letters.

[17]  Xiao-Liang Qi,et al.  The quantum spin Hall effect and topological insulators , 2010, 1001.1602.

[18]  R. Lake,et al.  Spin-Josephson effects in exchange coupled antiferromagnetic insulators , 2016, 1605.09427.

[19]  G. Bauer,et al.  Coherent elastic excitation of spin waves , 2014, 1412.5820.

[20]  N. Samarth Quantum materials discovery from a synthesis perspective. , 2017, Nature materials.

[21]  B. V. van Wees,et al.  Spin caloritronics. , 2011, Nature materials.

[22]  Yize Jin,et al.  Topological insulators , 2014, Topology in Condensed Matter.

[23]  M. Eschrig Spin-polarized supercurrents for spintronics , 2011 .

[24]  G. E. Pikus,et al.  Spin polarization of electrons by an electric current , 1991 .

[25]  Spin transport and relaxation in superconductors , 2001, cond-mat/0108303.

[26]  V. M. Edelstein Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems , 1990 .

[27]  J. Moodera,et al.  Measuring the spin polarization of a metal with a superconducting point contact , 1998, Science.

[28]  E. Sonin Spin currents and spin superfluidity , 2008, 0807.2524.

[29]  S. Maekawa,et al.  Effects of mechanical rotation on spin currents. , 2010, Physical review letters.

[30]  J. Shan,et al.  Criteria for accurate determination of the magnon relaxation length from the nonlocal spin Seebeck effect , 2017, 1709.06321.

[31]  Y. Tokura,et al.  Emergent functions of quantum materials , 2017, Nature Physics.

[32]  M. Klaui,et al.  Electrically controlled long-distance spin transport through an antiferromagnetic insulator , 2018, 1805.02451.

[33]  Parkin,et al.  Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. , 1990, Physical review letters.

[34]  Kentaro Nomura,et al.  Quantum Hall ferromagnetism in graphene. , 2006, Physical review letters.

[35]  Observation of inverse Edelstein effect in Rashba-split 2DEG between SrTiO3 and LaAlO3 at room temperature , 2016, Science Advances.

[36]  A. Serga,et al.  Supercurrent in a room-temperature Bose–Einstein magnon condensate , 2015, Nature Physics.

[37]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[38]  B. Hillebrands,et al.  Acoustic spin pumping as the origin of the long-range spin Seebeck effect , 2011, 1103.6120.

[39]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[40]  S. Rezende,et al.  Detecting the phonon spin in magnon–phonon conversion experiments , 2018 .

[41]  Yi Zhou,et al.  Quantum spin liquid states , 2016, 1607.03228.

[42]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[43]  T. Kikkawa,et al.  Spin transport in insulators without exchange stiffness , 2018, Nature Communications.

[44]  Takashi Taniguchi,et al.  Long-distance spin transport through a graphene quantum Hall antiferromagnet , 2018, Nature Physics.

[45]  T. Heikkila,et al.  Colloquium : Nonequilibrium effects in superconductors with a spin-splitting field , 2017, Reviews of Modern Physics.

[46]  F. Meier,et al.  A tunable topological insulator in the spin helical Dirac transport regime , 2009, Nature.

[47]  B. Hillebrands,et al.  Long-range spin Seebeck effect and acoustic spin pumping. , 2011, Nature materials.

[48]  Satoshi Okamoto,et al.  Spin-current probe for phase transition in an insulator , 2015, Nature Communications.

[49]  J. Slonczewski Current-driven excitation of magnetic multilayers , 1996 .

[50]  S. Okamoto Spin injection and spin transport in paramagnetic insulators , 2016, 1601.04925.

[51]  Y. Tserkovnyak,et al.  Superfluid spin transport through easy-plane ferromagnetic insulators. , 2013, Physical review letters.

[52]  H Adachi,et al.  Spin Seebeck insulator. , 2010, Nature Materials.

[53]  A. Yacoby,et al.  Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond , 2018, 1804.08742.

[54]  S Das Sarma,et al.  Generic new platform for topological quantum computation using semiconductor heterostructures. , 2009, Physical review letters.

[55]  R. Duine,et al.  Electrically tunable long-distance transport in crystalline antiferromagnetic iron oxide , 2018, Nature.

[56]  Y. Tserkovnyak,et al.  Cooper-Pair Spin Current in a Strontium Ruthenate Heterostructure. , 2018, Physical review letters.

[57]  A. Manchon,et al.  Antiferromagnetic spintronics , 2016, 1606.04284.

[58]  Spin injection and inverse Edelstein effect in the surface states of topological Kondo insulator SmB6 , 2016, Nature communications.

[59]  X. Xie,et al.  Spin superconductor in ferromagnetic graphene , 2010, 1012.4528.

[60]  B. Keimer,et al.  The physics of quantum materials , 2017, Nature Physics.

[61]  Yu Fu,et al.  Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. , 2016, Nature materials.

[62]  Jacob Linder,et al.  Superconducting spintronics , 2015, Nature Physics.

[63]  R. Averitt,et al.  Towards properties on demand in quantum materials. , 2017, Nature materials.

[64]  Y. Tserkovnyak,et al.  Nonlocal Magnetoresistance Mediated by Spin Superfluidity. , 2015, Physical review letters.

[65]  A. I. Buzdin Proximity effects in superconductor-ferromagnet heterostructures , 2005 .

[66]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[67]  H. Ohno,et al.  Current-induced torques in magnetic materials. , 2012, Nature materials.

[68]  Gerrit E. W. Bauer,et al.  Nonlocal magnetization dynamics in ferromagnetic heterostructures , 2005 .

[69]  T. Giamarchi,et al.  Bose–Einstein condensation in magnetic insulators , 2007, 0712.2250.

[70]  I. Žutić,et al.  Magnetoanisotropic Andreev reflection in ferromagnet-superconductor junctions. , 2015, Physical Review Letters.

[71]  Lifa Zhang,et al.  Chiral phonons at high-symmetry points in monolayer hexagonal lattices. , 2015, Physical review letters.

[72]  R. Duine,et al.  New perspectives for Rashba spin-orbit coupling. , 2015, Nature materials.

[73]  Uchida,et al.  Magnetic susceptibility of ideal spin 1/2 Heisenberg antiferromagnetic chain systems, Sr2CuO3 and SrCuO2. , 1996, Physical review letters.

[74]  P. Hohenberg,et al.  Hydrodynamic Theory of Spin Waves , 1969 .

[75]  S. Parkin,et al.  Extremely long quasiparticle spin lifetimes in superconducting aluminium using MgO tunnel spin injectors. , 2010, Nature materials.

[76]  T. Klapwijk,et al.  A spin triplet supercurrent through the half-metallic ferromagnet CrO2 , 2006, Nature.

[77]  Jean-Christophe Charlier,et al.  Graphene spintronics: the European Flagship perspective , 2015 .

[78]  E. Rashba,et al.  Properties of a 2D electron gas with lifted spectral degeneracy , 1984 .

[79]  Can-Ming Hu Dawn of Cavity Spintronics , 2015, 1508.01966.

[80]  A. Brataas,et al.  Spin Superfluidity in Biaxial Antiferromagnetic Insulators. , 2016, Physical review letters.

[81]  Tsutomu Nojima,et al.  Highly crystalline 2D superconductors , 2017 .

[82]  Wei Han,et al.  Quantum materials for spin and charge conversion , 2018, 1805.08474.

[83]  Ping Zhang,et al.  Proper definition of spin current in spin-orbit coupled systems. , 2006, Physical review letters.

[84]  D. Loss,et al.  Magnonic topological insulators in antiferromagnets , 2017, 1707.07427.

[85]  Y. P. Chen,et al.  Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems. , 2015, Physical review letters.

[86]  E. Sonin Superfluid spin transport in ferro- and antiferromagnets , 2018, Physical Review B.

[87]  B. Halperin,et al.  Spin Superfluidity in the ν=0 Quantum Hall State of Graphene. , 2015, Physical review letters.

[88]  T. Kikkawa,et al.  Spin-current coherence peak in superconductor/magnet junctions , 2018, Applied Physics Letters.

[89]  Tingyong Chen,et al.  Possible p-Wave Superconductivity in Epitaxial Bi/Ni Bilayers , 2015 .

[90]  M. Inoue,et al.  Spin pumping into superconductors: A new probe of spin dynamics in a superconducting thin film , 2017, 1704.04303.

[91]  R. H. Silsbee,et al.  Coupling between ferromagnetic and conduction-spin-resonance modes at a ferromagnetic-normal-metal interface , 1979 .

[92]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[93]  A. Chumak Magnon Spintronics , 2019, Spintronics Handbook: Spin Transport and Magnetism, Second Edition.

[94]  D. Wagenaar,et al.  Observation of the spin Peltier effect for magnetic insulators. , 2013, Physical review letters.

[95]  M. Blamire,et al.  Enhanced spin pumping into superconductors provides evidence for superconducting pure spin currents , 2018, Nature Materials.

[96]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[97]  A. Fert The origin, development and future of spintronics , 2008 .

[98]  M. Flatt'e,et al.  Strong Field Interactions between a Nanomagnet and a Photonic Cavity , 2009, 0907.3926.

[99]  Kivelson,et al.  Bogoliubov quasiparticles, spinons, and spin-charge decoupling in superconductors. , 1990, Physical review. B, Condensed matter.

[100]  S. Maekawa,et al.  Transmission of electrical signals by spin-wave interconversion in a magnetic insulator , 2010, Nature.

[101]  M. G. Blamire,et al.  Controlled Injection of Spin-Triplet Supercurrents into a Strong Ferromagnet , 2010, Science.

[102]  A. Serga,et al.  Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping , 2006, Nature.

[103]  Y. Maeno,et al.  The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing , 2003 .

[104]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[105]  Dong Qian,et al.  Topological surface states protected from backscattering by chiral spin texture , 2009, Nature.

[106]  Kazuya Ando,et al.  Spin Pumping Driven by Magnon Polarons. , 2018, Physical review letters.

[107]  Ali Najmaie,et al.  Quantum interference control of ballistic pure spin currents in semiconductors. , 2003, Physical review letters.

[108]  Bao-Ming Xu,et al.  Integer quantum magnon Hall plateau-plateau transition in a spin-ice model , 2016, 1606.02839.

[109]  B. Halperin,et al.  Superfluid spin transport through antiferromagnetic insulators , 2014, 1404.3987.

[110]  Lin Zhao,et al.  Phase Diagram and High Temperature Superconductivity at 65 K in Tuning Carrier Concentration of Single-Layer FeSe Films , 2012 .

[111]  Probe of spin dynamics in superconducting NbN thin films via spin pumping , 2017, Physical Review B.

[112]  R. A. Duine,et al.  Long-distance transport of magnon spin information in a magnetic insulator at room temperature , 2015 .

[113]  I. Tokatly,et al.  Spin-orbit coupling as a source of long-range triplet proximity effect in superconductor-ferromagnet hybrid structures , 2014, 1402.1025.

[114]  Johnson,et al.  Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. , 1985, Physical review letters.

[115]  L. Vila,et al.  Enhanced Spin Pumping Efficiency in Antiferromagnetic IrMn Thin Films around the Magnetic Phase Transition. , 2016, Physical review letters.

[116]  Takashi Kikkawa,et al.  Magnon Polarons in the Spin Seebeck Effect. , 2016, Physical review letters.

[117]  B. V. van Wees,et al.  Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve , 2001, Nature.

[118]  I. Sodemann,et al.  Nonlocal transport mediated by spin supercurrents , 2014, 1408.1100.

[119]  Wei Han,et al.  Experimental signatures of spin superfluid ground state in canted antiferromagnet Cr2O3 via nonlocal spin transport , 2018, Science Advances.

[120]  J. Robinson,et al.  Electrical detection of charge-current-induced spin polarization due to spin-momentum locking in Bi2Se3. , 2014, Nature nanotechnology.

[121]  Eiji Saitoh,et al.  Enhanced dc spin pumping into a fluctuating ferromagnet near T C , 2014, 1404.0768.

[122]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[123]  Qing-feng Sun,et al.  Spin-polarized nu=0 state of graphene: A spin superconductor , 2013, 1306.4154.

[124]  W. Han,et al.  Magnon Transport in Quasi-Two-Dimensional van der Waals Antiferromagnets , 2019, Physical Review X.

[125]  Yuji Matsuda,et al.  Highly Mobile Gapless Excitations in a Two-Dimensional Candidate Quantum Spin Liquid , 2010, Science.

[126]  C. Batista,et al.  Bose-Einstein condensation in quantum magnets , 2014 .

[127]  Ken-ichi Uchida,et al.  Theory of the spin Seebeck effect , 2012, Reports on progress in physics. Physical Society.

[128]  J. Sinova,et al.  Spin Hall effects , 2015 .

[129]  Shinhyun Choi,et al.  Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state , 2013, Nature.

[130]  Masahiro Sato,et al.  One-dimensional spinon spin currents , 2016, Nature Physics.

[131]  R. H. Silsbee,et al.  TOPICAL REVIEW: Spin orbit induced coupling of charge current and spin polarization , 2004 .

[132]  M. Eschrig,et al.  Generation of pure superconducting spin current in magnetic heterostructures via nonlocally induced magnetism due to Landau Fermi liquid effects , 2018, Physical Review B.

[133]  Qing-feng Sun,et al.  Ginzburg–Landau-type theory of spin superconductivity , 2013, Nature Communications.