Growth and characterization of molybdenum oxide nanorods by RF magnetron sputtering and subsequent annealing

High-densely packed and uniformly distributed molybdenum oxide nanorods have been grown onto glass substrates by RF magnetron sputtering and subsequent annealing in an oxygen atmosphere. A two-step growth mechanism (sputtering redeposition and enhanced rearrangement during annealing) for the formation of MoO3 nanorods has been proposed. The morphological, structural, optical and electrical properties of the nanorods have been investigated systematically using atomic force microscopy, scanning electron microscopy, x-ray diffraction, micro-Raman, UV–visible, photoluminescence (PL) spectroscopy and dc resistivity studies. The nanorods in the as-sputtered film and the film annealed at 473 K are amorphous in nature. However, the nanorods in the films annealed at 573 and 673 K exhibit the presence of monoclinic Mo8O23 and orthorhombic MoO3, respectively. Vibrational analysis of the molybdenum and oxygen atoms in the nanorods is carried out by micro-Raman spectra. The nanorods show room temperature PL in the UV–visible region. The PL emission is found to be strongly enhanced by post-deposition annealing. The low temperature resistivity measurement is done on the as-deposited film; the activation energy and polaron hopping energy for electrical conduction are calculated. The MoO3 nanorods are expected to exhibit enhanced functionality, particularly in nanoscale, photochromic and gas sensing applications.

[1]  J. Wu,et al.  Characterization and Cathodoluminescence of Beak-Like SnO2 Nanorods , 2008 .

[2]  K. J. Lethy,et al.  Bandgap renormalization in titania modified nanostructured tungsten oxide thin films prepared by pulsed laser deposition technique for solar cell applications , 2008 .

[3]  Xun Wang,et al.  Single-walled MoO3 nanotubes. , 2008, Journal of the American Chemical Society.

[4]  V. P. Mahadevan Pillai,et al.  Nanostructured tungsten oxide thin films by the reactive pulsed laser deposition technique , 2008 .

[5]  S. Tamir,et al.  Growth of SiOx nanowires by laser ablation , 2008, Nanotechnology.

[6]  B. Büchner,et al.  MoO3−δ nanorods: Synthesis, characterization and magnetic properties , 2007 .

[7]  M. Jayachandran,et al.  Characterization on electron beam evaporated α-MoO3 thin films by the influence of substrate temperature , 2007 .

[8]  C. Sanjeeviraja,et al.  An electrochromic device (ECD) cell characterization on electron beam evaporated MoO3 films by intercalating/deintercalating the H+ ions , 2007 .

[9]  Xueyuan Chen,et al.  Effects of phonon confinement on the luminescence dynamics of Eu3+ in Gd2O3 nanotubes , 2007 .

[10]  R. Mu,et al.  Nanofibers and nanoplatelets of MoO3 via an electrospinning technique , 2006 .

[11]  Z. Wen,et al.  Li-driven electrochemical properties of WO3 nanorods , 2006 .

[12]  D. Mao,et al.  The hydrothermal preparation, crystal structure and photoluminescent properties of GdOOH nanorods , 2006 .

[13]  L. Francioso,et al.  Synthesis, electrical characterization, and gas sensing properties of molybdenum oxide nanorods , 2006 .

[14]  E. Fitzgerald,et al.  The effect of post-annealing treatment on photoluminescence of ZnO nanorods prepared by hydrothermal synthesis , 2006 .

[15]  Ooi Kiang Tan,et al.  Effects of plasma treatment on the growth of SnO2 nanorods from SnO2 thin films , 2006 .

[16]  M. José-Yacamán,et al.  Self-assembly of molybdite nanoribbons , 2006 .

[17]  A. Xu,et al.  Novel multilamellar mesostructured molybdenum oxide nanofibers and nanobelts: synthesis and characterization. , 2005, The journal of physical chemistry. B.

[18]  Y. C. Lee,et al.  Semiconductor gas sensor based on tin oxide nanorods prepared by plasma-enhanced chemical vapor deposition with postplasma treatment , 2005 .

[19]  Hongjun Gao,et al.  Surface crystallization effects on the optical and electric properties of CdS nanorods , 2005, Nanotechnology.

[20]  G. Sberveglieri,et al.  Gas sensing properties of MoO3 nanorods to CO and CH3OH , 2005 .

[21]  J. Narayan,et al.  Epitaxial growth and properties of MoOx(2 , 2005 .

[22]  C. Granqvist,et al.  Small polaron formation in porous WO3−x nanoparticle films , 2004 .

[23]  Martin Moskovits,et al.  CHEMICAL SENSING AND CATALYSIS BY ONE-DIMENSIONAL METAL-OXIDE NANOSTRUCTURES , 2004 .

[24]  Matthias Wuttig,et al.  In situ measurements of thickness changes and mechanical stress upon gasochromic switching of thin MoOx films , 2004 .

[25]  A. Katrib,et al.  The bifunctional catalytic properties of a partially H2-reduced MoO3 , 2004 .

[26]  R. Chang,et al.  Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition , 2004 .

[27]  T. He,et al.  Photochromism of molybdenum oxide , 2003 .

[28]  H. Naramoto,et al.  Preparation of MoO3 nanostructures and their optical properties , 2003 .

[29]  S. Lau,et al.  Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air. , 2003 .

[30]  Tatyana Ivanova,et al.  Optical properties of chemical vapor deposited thin films of molybdenum and tungsten based metal oxides , 2003 .

[31]  Di Wang,et al.  Crystallographic shear defect in molybdenum oxides: Structure and TEM of molybdenum sub‐oxides Mo18O52 and Mo8O23 , 2003 .

[32]  Y. Bando,et al.  Field emission from MoO3 nanobelts , 2002 .

[33]  Takafumi Yao,et al.  Correlation between grain size and optical properties in zinc oxide thin films , 2002 .

[34]  K. Wong,et al.  Insertion and Removal of Protons in Single-Crystal Orthorhombic Molybdenum Trioxide under H2S/H2 and O2/N2 , 2002 .

[35]  C. E. Tracy,et al.  Raman spectroscopic studies of electrochromic a-MoO3 thin films , 2002 .

[36]  M. Giulio,et al.  Physical properties of sputtered molybdenum oxide thin films suitable for gas sensing applications , 2002 .

[37]  H. Ohtsuka Characteristics of Li/MoO3-x thin film batteries , 2001 .

[38]  M. Itoh,et al.  Optical properties and electronic structures of layered MoO3 single crystals , 2001 .

[39]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[40]  R. Schlögl,et al.  In situ resonance Raman studies of molybdenum oxide based selective oxidation catalysts , 2001 .

[41]  Alberto Piqué,et al.  Effect of film thickness on the properties of indium tin oxide thin films , 2000 .

[42]  K. Johnston,et al.  Control of thickness and orientation of solution-grown silicon nanowires , 2000, Science.

[43]  M. Quevedo-López,et al.  Enhancement of the photochromic and thermochromic properties of molybdenum oxide thin films by a cadmium sulfide underlayer , 2000 .

[44]  M. Łabanowska Paramagnetic defects in MoO3—revisited , 1999 .

[45]  M. Ziese,et al.  Polaronic effects on the resistivity of manganite thin films , 1998 .

[46]  Matteo Ferroni,et al.  Characterization of a molybdenum oxide sputtered thin film as a gas sensor , 1997 .

[47]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[48]  N. Koshida,et al.  Dual Function of Thin MoO3 and WO3 Films as Negative and Positive Resists for Focused Ion Beam Lithography , 1996 .

[49]  H. Knözinger,et al.  Mechanically activated MoO3. 5. Redox behavior , 1996 .

[50]  C. Julien,et al.  Synthesis and characterization of flash-evaporated MoO3 thin films , 1995 .

[51]  A. Gorenstein,et al.  Influence of the growth conditions on electrochemical features of MoO3 film-cathodes in lithium microbatteries , 1994 .

[52]  C. Granqvist,et al.  Electrochromism and smart window design , 1992 .

[53]  Y. Igasaki,et al.  The effects of zinc diffusion on the electrical and optical properties of ZnO:Al films prepared by r.f. reactive sputtering , 1991 .

[54]  J. R. Stevens,et al.  Electrochromic Li(x)WO(3)/poymer laminate/Li(y)V(2)O(5) device: toward an all-solid-state smart window. , 1989, Applied optics.

[55]  W. Morgan Universal resputtering curve , 1989 .

[56]  K. Eda,et al.  Preparation and Characterization of Hydrogen Molybdenum Bronzes, HxMoO3 , 1989 .

[57]  P. Couturier Japan , 1988, The Lancet.

[58]  J. Gabrusenoks,et al.  Structure of amorphous thin films of WO3 and MoO3 , 1987 .

[59]  S. Hoshino,et al.  Structure determination of low-dimensional conductor Mo8O23 , 1987 .

[60]  P. Dickens,et al.  Hydrogen insertion in oxides , 1986 .

[61]  N. Miyata,et al.  Preparation and electrochromic properties of rf‐sputtered molybdenum oxide films , 1985 .

[62]  Jānis Kleperis,et al.  Electrochromic colour centres in amorphous tungsten trioxide thin films , 1984 .

[63]  R. Bunshah The activated reactive evaporation process: Developments and applications , 1981 .

[64]  I. R. Beattie,et al.  Oxide phonon spectra , 1969 .

[65]  A. Magnéli,et al.  Studies on Molybdenum Oxides. , 1959 .

[66]  L. G. Sillén,et al.  On the Crystal Structure of Molybdenum Trioxide. , 1950 .

[67]  M. L. Fuller Twinning in Zinc Oxide , 1944 .